Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Sci Rep ; 12(1): 4799, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314728

RESUMO

A repeat expansion in C9orf72 is the major cause of both frontotemporal dementia and amyotrophic lateral sclerosis, accounting for approximately 1 in 12 cases of either disease. The expansion is translated to produce five dipeptide repeat proteins (DPRs) which aggregate in patient brain and are toxic in numerous models, though the mechanisms underlying this toxicity are poorly understood. Recent studies highlight nucleocytoplasmic transport impairments as a potential mechanism underlying neurodegeneration in C9orf72-linked disease, although the contribution of DPRs to this remains unclear. We expressed DPRs in HeLa cells, in the absence of repeat RNA. Crucially, we expressed DPRs at repeat-lengths found in patients (> 1000 units), ensuring our findings were relevant to disease. Immunofluorescence imaging was used to investigate the impact of each DPR on the nucleus, nucleocytoplasmic transport machinery and TDP-43 localisation. DPRs impaired the structural integrity of the nucleus, causing nuclear membrane disruption and misshapen nuclei. Ran and RanGAP, two proteins required for nucleocytoplasmic transport, were also mislocalised in DPR-expressing cells. Furthermore, DPRs triggered mislocalisation of TDP-43 to the cytoplasm, and this occurred in the same cells as Ran and RanGAP mislocalisation, suggesting a potential link between DPRs, nucleocytoplasmic transport impairments and TDP-43 pathology.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Citoplasma/metabolismo , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/patologia , Células HeLa , Humanos
3.
Neuron ; 109(3): 448-460.e4, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242422

RESUMO

We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Proteína Huntingtina/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/patologia , Humanos , Mutação , Sequenciamento Completo do Genoma
4.
J Neurol Neurosurg Psychiatry ; 91(12): 1304-1311, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33055142

RESUMO

OBJECTIVE: The precise relationship between frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is incompletely understood. The association has been described as a continuum, yet data suggest that this may be an oversimplification. Direct comparisons between patients who have behavioural variant FTD (bvFTD) with and without ALS are rare. This prospective comparative study aimed to determine whether there are phenotypic differences in cognition and behaviour between patients with FTD-ALS and bvFTD alone. METHODS: Patients with bvFTD or FTD-ALS and healthy controls underwent neuropsychological testing, focusing on language, executive functions and social cognition. Behavioural change was measured through caregiver interview. Blood samples were screened for known FTD genes. RESULTS: 23 bvFTD, 20 FTD-ALS and 30 controls participated. On cognitive tests, highly significant differences were elicited between patients and controls, confirming the tests' sensitivities to FTD. bvFTD and FTD-ALS groups performed similarly, although with slightly greater difficulty in patients with ALS-FTD on category fluency and a sentence-ordering task that assesses grammar production. Patients with bvFTD demonstrated more widespread behavioural change, with more frequent disinhibition, impulsivity, loss of empathy and repetitive behaviours. Behaviour in FTD-ALS was dominated by apathy. The C9ORF72 repeat expansion was associated with poorer performance on language-related tasks. CONCLUSIONS: Differences were elicited in cognition and behaviour between bvFTD and FTD-ALS, and patients carrying the C9ORF72 repeat expansion. The findings, which raise the possibility of phenotypic variation between bvFTD and FTD-ALS, have clinical implications for early detection of FTD-ALS and theoretical implications for the nature of the relationship between FTD and ALS.


Assuntos
Esclerose Lateral Amiotrófica/psicologia , Apatia , Proteína C9orf72/genética , Demência Frontotemporal/psicologia , Comportamento Impulsivo , Inibição Psicológica , Cognição Social , Idoso , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Estudos de Casos e Controles , Empatia , Função Executiva , Feminino , Demência Frontotemporal/complicações , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Genótipo , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fenótipo , Estudos Prospectivos , Comportamento Estereotipado
5.
Acta Neuropathol Commun ; 8(1): 158, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894207

RESUMO

A large intronic hexanucleotide repeat expansion (GGGGCC) within the C9orf72 (C9orf72-SMCR8 Complex Subunit) locus is the most prevalent genetic cause of both Frontotemporal Dementia (FTD) and Motor Neuron Disease (MND). In patients this expansion is typically hundreds to thousands of repeat units in length. Repeat associated non-AUG translation of the expansion leads to the formation of toxic, pathological Dipeptide-Repeat Proteins (DPRs). To date there remains a lack of in vivo models expressing C9orf72 related DPRs with a repeat length of more than a few hundred repeats. As such our understanding of how physiologically relevant repeat length DPRs effect the nervous system in an ageing in vivo system remains limited. In this study we generated Drosophila models expressing DPRs over 1000 repeat units in length, a known pathological length in humans. Using these models, we demonstrate each DPR exhibits a unique, age-dependent, phenotypic and pathological profile. Furthermore, we show co-expression of specific DPR combinations leads to distinct, age-dependent, phenotypes not observed through expression of single DPRs. We propose these models represent a unique, in vivo, tool for dissecting the molecular mechanisms implicated in disease pathology, opening up new avenues in the study of both MND and FTD.


Assuntos
Expansão das Repetições de DNA/genética , Dipeptídeos/genética , Modelos Animais de Doenças , Demência Frontotemporal , Doença dos Neurônios Motores , Animais , Proteína C9orf72/genética , Drosophila , Fenótipo
6.
Neurochem Res ; 45(7): 1711-1728, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32361798

RESUMO

Healthy brain function is mediated by several complementary signalling pathways, many of which are driven by extracellular vesicles (EVs). EVs are heterogeneous in both size and cargo and are constitutively released from cells into the extracellular milieu. They are subsequently trafficked to recipient cells, whereupon their entry can modify the cellular phenotype. Here, in order to further analyse the mRNA and protein cargo of neuronal EVs, we isolated EVs by size exclusion chromatography from human induced pluripotent stem cell (iPSC)-derived neurons. Electron microscopy and dynamic light scattering revealed that the isolated EVs had a diameter of 30-100 nm. Transcriptomic and proteomics analyses of the EVs and neurons identified key molecules enriched in the EVs involved in cell surface interaction (integrins and collagens), internalisation pathways (clathrin- and caveolin-dependent), downstream signalling pathways (phospholipases, integrin-linked kinase and MAPKs), and long-term impacts on cellular development and maintenance. Overall, we show that key signalling networks and mechanisms are enriched in EVs isolated from human iPSC-derived neurons.


Assuntos
Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Redes Reguladoras de Genes/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Transcrição Gênica/fisiologia , Humanos
7.
Biosci Rep ; 40(4)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32301481

RESUMO

Alzheimer's disease (AD) is a neurodegenerative condition, of which one of the cardinal pathological hallmarks is the extracellular accumulation of amyloid ß (Aß) peptides. These peptides are generated via proteolysis of the amyloid precursor protein (APP), in a manner dependent on the ß-secretase, BACE1 and the multicomponent γ-secretase complex. Recent data also suggest a contributory role in AD of transactive response DNA binding protein 43 (TDP-43). There is little insight into a possible mechanism linking TDP-43 and APP processing. To this end, we used cultured human neuronal cells to investigate the ability of TDP-43 to interact with APP and modulate its proteolytic processing. Immunocytochemistry showed TDP-43 to be spatially segregated from both the extranuclear APP holoprotein and its nuclear C-terminal fragment. The latter (APP intracellular domain) was shown to predominantly localise to nucleoli, from which TDP-43 was excluded. Furthermore, neither overexpression of each of the APP isoforms nor siRNA-mediated knockdown of APP had any effect on TDP-43 expression. Doxycycline-stimulated overexpression of TDP-43 was explored in an inducible cell line. Overexpression of TDP-43 had no effect on expression of the APP holoprotein, nor any of the key proteins involved in its proteolysis. Furthermore, increased TDP-43 expression had no effect on BACE1 enzymatic activity or immunoreactivity of Aß1-40, Aß1-42 or the Aß1-40:Aß1-42 ratio. Also, siRNA-mediated knockdown of TDP-43 had no effect on BACE1 immunoreactivity. Taken together, these data indicate that TDP-43 function and/or dysfunction in AD is likely independent from dysregulation of APP expression and proteolytic processing and Aß generation.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Ligação a DNA/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Humanos , Neurônios/citologia , Neurônios/metabolismo , Proteólise , RNA Interferente Pequeno/metabolismo
8.
Acta Neuropathol Commun ; 8(1): 5, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996268

RESUMO

Dementia with Lewy bodies (DLB) is a clinically heterogeneous disorder with a substantial burden on healthcare. Despite this, the genetic basis of the disorder is not well defined and its boundaries with other neurodegenerative diseases are unclear. Here, we performed whole exome sequencing of a cohort of 1118 Caucasian DLB patients, and focused on genes causative of monogenic neurodegenerative diseases. We analyzed variants in 60 genes implicated in DLB, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and atypical parkinsonian or dementia disorders, in order to determine their frequency in DLB. We focused on variants that have previously been reported as pathogenic, and also describe variants reported as pathogenic which remain of unknown clinical significance, as well as variants associated with strong risk. Rare missense variants of unknown significance were found in APP, CHCHD2, DCTN1, GRN, MAPT, NOTCH3, SQSTM1, TBK1 and TIA1. Additionally, we identified a pathogenic GRN p.Arg493* mutation, potentially adding to the diversity of phenotypes associated with this mutation. The rarity of previously reported pathogenic mutations in this cohort suggests that the genetic overlap of other neurodegenerative diseases with DLB is not substantial. Since it is now clear that genetics plays a role in DLB, these data suggest that other genetic loci play a role in this disease.


Assuntos
Doença por Corpos de Lewy/genética , Doenças Neurodegenerativas/genética , Idoso , Idoso de 80 Anos ou mais , Cerebelo/metabolismo , Estudos de Coortes , Feminino , Lobo Frontal/metabolismo , Humanos , Masculino , Mutação , Sequenciamento do Exoma
9.
Lancet Neurol ; 19(2): 145-156, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810826

RESUMO

BACKGROUND: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. METHODS: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. FINDINGS: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35-62, for age at onset; 61%, 47-73, for age at death), and even more by family membership (66%, 56-75, for age at onset; 74%, 65-82, for age at death). In the GRN group, only 2% (0-10) of the variability of age at onset and 9% (3-21) of that of age of death was explained by the specific mutation, whereas 14% (9-22) of the variability of age at onset and 20% (12-30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11-26) of the variability of age at onset and 19% (12-29) of that of age at death. INTERPRETATION: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. FUNDING: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society.


Assuntos
Idade de Início , Demência Frontotemporal/genética , Demência Frontotemporal/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Estudos de Coortes , Progressão da Doença , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Progranulinas/genética , Progranulinas/metabolismo , Estudos Retrospectivos , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Neurobiol Aging ; 84: 235.e1-235.e8, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31676125

RESUMO

A C9orf72 repeat expansion is the most common cause of both frontotemporal dementia and motor neuron disease. The expansion is translated to produce dipeptide repeat proteins (DPRs), which are toxic in vivo and in vitro. However, the mechanisms underlying DPR toxicity remain unclear. Mouse models which express DPRs at repeat lengths found in human disease are urgently required to investigate this. We aimed to generate transgenic mice expressing DPRs at repeat lengths of >1000 using alternative codon sequences, to reduce the repetitive nature of the insert. We found that although these inserts did integrate into the mouse genome, the alternative codon sequences did not protect from instability between generations. Our findings suggest that stable integration of long DPR sequences may not be possible. Administration of viral vectors after birth may be a more effective delivery method for long repeats.


Assuntos
Proteína C9orf72 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Animais , Camundongos , Camundongos Transgênicos , Expansão das Repetições de Trinucleotídeos
11.
Brain ; 141(10): 2895-2907, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252044

RESUMO

The G4C2-repeat expansion in C9orf72 is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. The high phenotypic heterogeneity of C9orf72 patients includes a wide range in age of onset, modifiers of which are largely unknown. Age of onset could be influenced by environmental and genetic factors both of which may trigger DNA methylation changes at CpG sites. We tested the hypothesis that age of onset in C9orf72 patients is associated with some common single nucleotide polymorphisms causing a gain or loss of CpG sites and thus resulting in DNA methylation alterations. Combined analyses of epigenetic and genetic data have the advantage of detecting functional variants with reduced likelihood of false negative results due to excessive correction for multiple testing in genome-wide association studies. First, we estimated the association between age of onset in C9orf72 patients (n = 46) and the DNA methylation levels at all 7603 CpG sites available on the 450 k BeadChip that are mapped to common single nucleotide polymorphisms. This was followed by a genetic association study of the discovery (n = 144) and replication (n = 187) C9orf72 cohorts. We found that age of onset was reproducibly associated with polymorphisms within a 124.7 kb linkage disequilibrium block tagged by top-significant variation, rs9357140, and containing two overlapping genes (LOC101929163 and C6orf10). A meta-analysis of all 331 C9orf72 carriers revealed that every A-allele of rs9357140 reduced hazard by 30% (P = 0.0002); and the median age of onset in AA-carriers was 6 years later than GG-carriers. In addition, we investigated a cohort of C9orf72 negative patients (n = 2634) affected by frontotemporal dementia and/or amyotrophic lateral sclerosis; and also found that the AA-genotype of rs9357140 was associated with a later age of onset (adjusted P = 0.007 for recessive model). Phenotype analyses detected significant association only in the largest subgroup of patients with frontotemporal dementia (n = 2142, adjusted P = 0.01 for recessive model). Gene expression studies of frontal cortex tissues from 25 autopsy cases affected by amyotrophic lateral sclerosis revealed that the G-allele of rs9357140 is associated with increased brain expression of LOC101929163 (a non-coding RNA) and HLA-DRB1 (involved in initiating immune responses), while the A-allele is associated with their reduced expression. Our findings suggest that carriers of the rs9357140 GG-genotype (linked to an earlier age of onset) might be more prone to be in a pro-inflammatory state (e.g. by microglia) than AA-carriers. Further, investigating the functional links within the C6orf10/LOC101929163/HLA-DRB1 pathway will be critical to better define age-dependent pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Regulação da Expressão Gênica/genética , Idade de Início , Idoso , Ilhas de CpG , Metilação de DNA , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
12.
Hum Mol Genet ; 27(10): 1754-1762, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29528390

RESUMO

Large expansions of hexanucleotide GGGGCC (G4C2) repeats (hundreds to thousands) in the first intron of the chromosome 9 open reading frame 72 (C9orf72) locus are the strongest known genetic factor associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Different hypotheses exist about the underlying disease mechanism including loss of function by haploinsufficiency, toxicity arising as a result of RNA or dipeptide repeats (DPRs). Five different DPRs are produced by repeat-associated non-ATG-initiated translation of the G4C2 repeats. Though earlier studies have indicated toxicity of the DPRs in worms, flies, primary cultured cells and cell lines, the effect of expressing DPRs of amyotrophic lateral sclerosis-relevant length has not been tested on motor behaviour in vertebrate models. In this study, by expressing constructs with alternate codons encoding different lengths of each DPR (40, 200 and 1000) in the vertebrate zebrafish model, the GR DPR was found to lead to the greatest developmental lethality and morphological defects, and GA, the least. However, expressing 1000 repeats of any DPR, including the 'non-toxic' GA DPR led to locomotor defects. Based on these observations, a transgenic line stably expressing 100 GR repeats was generated to allow specific regional and temporal expression of GR repeats in vivo. Expression of GR DPRs ubiquitously resulted in severe morphological defects and reduced swimming. However, when expressed specifically in motor neurons, the developmental defects were significantly reduced, but the swimming phenotype persisted, suggesting that GR DPRs have a toxic effect on motor neuron function. This was validated by the reduction in motor neuron length even in already formed motor neurons when GR was expressed in these. Hence, the expression of C9orf72-associated DPRs can cause significant motor deficits in vertebrates.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Animais Geneticamente Modificados/genética , Dipeptídeos/genética , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/fisiopatologia , Regulação da Expressão Gênica , Humanos , Locomoção/genética , Locomoção/fisiologia , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Peixe-Zebra/genética
13.
J Neurol Neurosurg Psychiatry ; 89(8): 813-816, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29332010

RESUMO

BACKGROUND: Several studies suggest that multiple rare genetic variants in genes causing monogenic forms of neurodegenerative disorders interact synergistically to increase disease risk or reduce the age of onset, but these studies have not been validated in large sporadic case series. METHODS: We analysed 980 neuropathologically characterised human brains with Alzheimer's disease (AD), Parkinson's disease-dementia with Lewy bodies (PD-DLB), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) and age-matched controls. Genetic variants were assessed using the American College of Medical Genetics criteria for pathogenicity. Individuals with two or more variants within a relevant disease gene panel were defined as 'oligogenic'. RESULTS: The majority of oligogenic variant combinations consisted of a highly penetrant allele or known risk factor in combination with another rare but likely benign allele. The presence of oligogenic variants did not influence the age of onset or disease severity. After controlling for the single known major risk allele, the frequency of oligogenic variants was no different between cases and controls. CONCLUSIONS: A priori, individuals with AD, PD-DLB and FTD-ALS are more likely to harbour a known genetic risk factor, and it is the burden of these variants in combination with rare benign alleles that is likely to be responsible for some oligogenic associations. Controlling for this bias is essential in studies investigating a potential role for oligogenic variation in neurodegenerative diseases.


Assuntos
Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Encéfalo/patologia , Demência Frontotemporal/genética , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/patologia , Feminino , Demência Frontotemporal/patologia , Predisposição Genética para Doença , Variação Genética , Genótipo , Humanos , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-28766957

RESUMO

We have employed as 'gold standards' two in-house, well-characterised and validated polyclonal antibodies, C9-L and C9-S, which detect the longer and shorter forms of C9orf72, and have compared seven other commercially available antibodies with these in order to evaluate the utility of the latter as credible tools for the demonstration of C9orf72. C9-L and C9-S antibodies immunostained cytoplasmic 'speckles', and the nuclear membrane, respectively, in cerebellar Purkinje cells of the cerebellum in patients with behavioural variant frontotemporal dementia (bvFTD) with amyotrophic lateral sclerosis (ALS), and in patients with ALS alone. Similar staining was seen in Purkinje cells in healthy control tissues and in other neurodegenerative disorders, and in pyramidal cells of CA4 and dentate gyrus of hippocampus. However, in the spinal cord there was little cytoplasmic staining with C9-L antibody. C9-S antibody immunostained the nuclear membrane of anterior horn cells in healthy neurons. In patients with bvFTD + ALS, or ALS alone, this C9-S nuclear staining was redistributed to the plasma membrane. In those patients with bvFTD + ALS or ALS bearing an expansion in C9orf72, none of the commercially available antibodies detected TDP-43 inclusions in anterior horn cells, nor were dipeptide repeat proteins demonstrated. Five of the commercial antibodies provided immunohistochemical staining patterns similar in morphological appearance to the in-house C9-L antibody, but distinct from C9-S antibody. However, only three showed sufficient specificity and intensity of staining for C9orf72 at acceptably low concentrations, to make them of practical value and sufficiently reliable for the detection of at least the longer form of C9orf72 protein.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Anticorpos/imunologia , Proteína C9orf72/metabolismo , Demência Frontotemporal/metabolismo , Mutação/genética , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Feminino , Demência Frontotemporal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Neurônios/metabolismo , Medula Espinal/metabolismo
15.
Acta Neuropathol Commun ; 5(1): 54, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28666471

RESUMO

Frontotemporal Lobar Degeneration (FTLD) encompasses certain related neurodegenerative disorders which alter personality and cognition. Heterogeneous ribonuclear proteins (hnRNPs) maintain RNA metabolism and changes in their function may underpin the pathogenesis of FTLD. Immunostaining for hnRNP E2 was performed on sections of frontal and temporal cortex with hippocampus from 80 patients with FTLD, stratified by pathology into FTLD-tau and FTLD-TDP type A, B and C subtypes, and by genetics into patients with C9orf72 expansions, MAPT or GRN mutations, or those with no known mutation, and on 10 healthy controls. Semi-quantitative analysis assessed hnRNP staining in frontal and temporal cortex, and in dentate gyrus (DG) of hippocampus, in the different pathology and genetic groups. We find that hnRNP E2 immunostaining detects the TDP-43 positive dystrophic neurites (DN) within frontal and temporal cortex, and the neuronal cytoplasmic inclusions (NCI) seen in DG granule cells, characteristic of patients with Semantic Dementia (SD) and type C TDP-43 pathology, but did not detect TDP-43 or tau inclusions in any of the other pathological or genetic variants of FTLD. Double immunofluorescence for hnRNP E2 and TDP-43 showed most TDP-43 immunopositive DN to contain hnRNP E2. Present findings indicate an association between TDP-43 and hnRNP E2 which might underlie the pathogenetic mechanism of this form of FTLD.


Assuntos
Encéfalo/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Neuritos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Proteína C9orf72/genética , Citoplasma/metabolismo , Citoplasma/patologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Pessoa de Meia-Idade , Neuritos/patologia , Progranulinas , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Acta Neuropathol Commun ; 5(1): 31, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28431575

RESUMO

Frontotemporal Lobar Degeneration (FTLD) encompasses certain related neurodegenerative disorders which alter behaviour, personality and language. Heterogeneous ribonuclear proteins (hnRNPs) maintain RNA metabolism and changes in their function may underpin the pathogenesis of FTLD. Immunostaining for hnRNP A1, A2/B1 and A3 was performed on sections of temporal cortex with hippocampus from 61 patients with FTLD, stratified by pathological hallmarks into FTLD-tau and FTLD-TDP type A, B and C subtypes, and by genetics into patients with C9orf72 expansions, MAPT or GRN mutations, or those without known mutation. Four patients with Motor Neurone Disease (MND) with C9orf72 expansions and 10 healthy controls were also studied. Semi-quantitative analysis assessed hnRNP staining intensity in dentate gyrus (DG) and CA4 region of hippocampus, and temporal cortex (Tcx) in the different pathological and genetic groups.Immunostaining for hnRNP A1, A2/B1 and A3 revealed no consistent changes in pattern or amount of physiological staining across any of the pathological or genetic groups. No immunostaining of any inclusions resembling TDP-43 immunoreactive neuronal cytoplasmic inclusions or dystrophic neurites, was seen in either Tcx or DG of the hippocampus in any of the FTLD cases investigated for hnRNP A1, A2/B1 and A3. However, immunostaining for hnRNP A3 showed that inclusion bodies, resembling those TDP-43 negative, p62-immunopositive structures containing dipeptide repeat proteins (DPR) were variably observed in hippocampus and cerebellum. The proportion of cases showing hnRNP A3-immunoreactive DPR, and the number of hnRNP A3-positive inclusions within cases, was significantly greater in DG than in cells of CA4 region and cerebellum, but the latter was significantly less in all three regions compared to that detected by p62 immunostaining.


Assuntos
Proteína C9orf72/genética , Degeneração Lobar Frontotemporal/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Hipocampo/metabolismo , Doença dos Neurônios Motores/metabolismo , Lobo Temporal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cerebelo/metabolismo , Cerebelo/patologia , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Hipocampo/patologia , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Progranulinas , Lobo Temporal/patologia , Proteínas tau/genética
18.
Acta Neuropathol Commun ; 5(1): 13, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153046

RESUMO

Mitochondria play a key role in common neurodegenerative diseases and contain their own genome: mtDNA. Common inherited polymorphic variants of mtDNA have been associated with several neurodegenerative diseases, and somatic deletions of mtDNA have been found in affected brain regions. However, there are conflicting reports describing the role of rare inherited variants and somatic point mutations in neurodegenerative disorders, and recent evidence also implicates mtDNA levels. To address these issues we studied 1363 post mortem human brains with a histopathological diagnosis of Parkinson's disease (PD), Alzheimer's disease (AD), Frontotemporal dementia - Amyotrophic Lateral Sclerosis (FTD-ALS), Creutzfeldt Jacob disease (CJD), and healthy controls. We obtained high-depth whole mitochondrial genome sequences using off target reads from whole exome sequencing to determine the association of mtDNA variation with the development and progression of disease, and to better understand the development of mtDNA mutations and copy number in the aging brain. With this approach, we found a surprisingly high frequency of heteroplasmic mtDNA variants in 32.3% of subjects. However, we found no evidence of an association between rare inherited variants of mtDNA or mtDNA heteroplasmy and disease. In contrast, we observed a reduction in the amount of mtDNA copy in both AD and CJD. Based on these findings, single nucleotide variants of mtDNA are unlikely to play a major role in the pathogenesis of these neurodegenerative diseases, but mtDNA levels merit further investigation.


Assuntos
Encefalopatias/genética , Encefalopatias/metabolismo , Encéfalo/metabolismo , Variações do Número de Cópias de DNA , DNA Mitocondrial , Mutação Puntual , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Encéfalo/patologia , Encefalopatias/patologia , Estudos de Coortes , Exoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
19.
Genome Res ; 27(1): 165-173, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003435

RESUMO

Given the central role of genetic factors in the pathogenesis of common neurodegenerative disorders, it is critical that mechanistic studies in human tissue are interpreted in a genetically enlightened context. To address this, we performed exome sequencing and copy number variant analysis on 1511 frozen human brains with a diagnosis of Alzheimer's disease (AD, n = 289), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS, n = 252), Creutzfeldt-Jakob disease (CJD, n = 239), Parkinson's disease (PD, n = 39), dementia with Lewy bodies (DLB, n = 58), other neurodegenerative, vascular, or neurogenetic disorders (n = 266), and controls with no significant neuropathology (n = 368). Genomic DNA was extracted from brain tissue in all cases before exome sequencing (Illumina Nextera 62 Mb capture) with variants called by FreeBayes; copy number variant (CNV) analysis (Illumina HumanOmniExpress-12 BeadChip); C9orf72 repeat expansion detection; and APOE genotyping. Established or likely pathogenic heterozygous, compound heterozygous, or homozygous variants, together with the C9orf72 hexanucleotide repeat expansions and a copy number gain of APP, were found in 61 brains. In addition to known risk alleles in 349 brains (23.9% of 1461 undergoing exome sequencing), we saw an association between rare variants in GRN and DLB. Rare CNVs were found in <1.5% of brains, including copy number gains of PRPH that were overrepresented in AD. Clinical, pathological, and genetic data are available, enabling the retrieval of specific frozen brains through the UK Medical Research Council Brain Banks Network. This allows direct access to pathological and control human brain tissue based on an individual's genetic architecture, thus enabling the functional validation of known genetic risk factors and potentially pathogenic alleles identified in future studies.


Assuntos
Encéfalo/patologia , Variações do Número de Cópias de DNA/genética , Sequenciamento do Exoma/métodos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Pesquisa Biomédica , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , DNA/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Genótipo , Humanos , Doença de Parkinson/genética , Doença de Parkinson/patologia
20.
Hum Mol Genet ; 25(23): 5069-5082, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798094

RESUMO

C9orf72 expansions are the most common genetic cause of FTLD and MND identified to date. Although being intronic, the expansion is translated into five different dipeptide repeat proteins (DPRs) that accumulate within patients' neurons. Attempts have been made to model DPRs in cell and animals. However, the majority of these use DPRs repeat numbers much shorter than those observed in patients. To address this we have generated a selection of DPR expression constructs with repeat numbers in excess of 1000 repeats, matching what is seen in patients. Small and larger DPRs produce inclusions with similar morphology but different cellular effects. We demonstrate a length dependent effect using electrophysiology with a phenotype only occurring with the longest DPRs. These data highlight the importance of using physiologically relevant repeat numbers when modelling DPRs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Dipeptídeos/genética , Degeneração Lobar Frontotemporal/genética , Proteínas/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Proteína C9orf72 , Expansão das Repetições de DNA/genética , Dipeptídeos/metabolismo , Fenômenos Eletrofisiológicos , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/fisiopatologia , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Íntrons/genética , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos/genética , Agregados Proteicos/fisiologia , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...