Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 221(3)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35639938

RESUMO

Many studies have quantified the distribution of heterozygosity and relatedness in natural populations, but few have examined the demographic processes driving these patterns. In this study, we take a novel approach by studying how population structure affects both pairwise identity and the distribution of heterozygosity in a natural population of the self-incompatible plant Antirrhinum majus. Excess variance in heterozygosity between individuals is due to identity disequilibrium, which reflects the variance in inbreeding between individuals; it is measured by the statistic g2. We calculated g2 together with FST and pairwise relatedness (Fij) using 91 SNPs in 22,353 individuals collected over 11 years. We find that pairwise Fij declines rapidly over short spatial scales, and the excess variance in heterozygosity between individuals reflects significant variation in inbreeding. Additionally, we detect an excess of individuals with around half the average heterozygosity, indicating either selfing or matings between close relatives. We use 2 types of simulation to ask whether variation in heterozygosity is consistent with fine-scale spatial population structure. First, by simulating offspring using parents drawn from a range of spatial scales, we show that the known pollen dispersal kernel explains g2. Second, we simulate a 1,000-generation pedigree using the known dispersal and spatial distribution and find that the resulting g2 is consistent with that observed from the field data. In contrast, a simulated population with uniform density underestimates g2, indicating that heterogeneous density promotes identity disequilibrium. Our study shows that heterogeneous density and leptokurtic dispersal can together explain the distribution of heterozygosity.


Assuntos
Antirrhinum , Genética Populacional , Variação Genética , Heterozigoto , Humanos , Endogamia , Repetições de Microssatélites
2.
Heredity (Edinb) ; 126(5): 846-858, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33608651

RESUMO

Conservation management can be aided by knowledge of genetic diversity and evolutionary history, so that ecological and evolutionary processes can be preserved. The Button Wrinklewort daisy (Rutidosis leptorrhynchoides) was a common component of grassy ecosystems in south-eastern Australia. It is now endangered due to extensive habitat loss and the impacts of livestock grazing, and is currently restricted to a few small populations in two regions >500 km apart, one in Victoria, the other in the Australian Capital Territory and nearby New South Wales (ACT/NSW). Using a genome-wide SNP dataset, we assessed patterns of genetic structure and genetic differentiation of 12 natural diploid populations. We estimated intrapopulation genetic diversity to scope sources for genetic management. Bayesian clustering and principal coordinate analyses showed strong population genetic differentiation between the two regions, and substantial substructure within ACT/NSW. A coalescent tree-building approach implemented in SNAPP indicated evolutionary divergence between the two distant regions. Among the populations screened, the last two known remaining Victorian populations had the highest genetic diversity, despite having among the lowest recent census sizes. A maximum likelihood population tree method implemented in TreeMix suggested little or no recent gene flow except potentially between very close neighbours. Populations that were more genetically distinctive had lower genetic diversity, suggesting that drift in isolation is likely driving population differentiation though loss of diversity, hence re-establishing gene flow among them is desirable. These results provide background knowledge for evidence-based conservation and support genetic rescue within and between regions to elevate genetic diversity and alleviate inbreeding.


Assuntos
Asteraceae/genética , Ecossistema , Variação Genética , Genética Populacional , Austrália , Teorema de Bayes , Espécies em Perigo de Extinção , Densidade Demográfica
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190544, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32654641

RESUMO

Many recent studies have addressed the mechanisms operating during the early stages of speciation, but surprisingly few studies have tested theoretical predictions on the evolution of strong reproductive isolation (RI). To help address this gap, we first undertook a quantitative review of the hybrid zone literature for flowering plants in relation to reproductive barriers. Then, using Populus as an exemplary model group, we analysed genome-wide variation for phylogenetic tree topologies in both early- and late-stage speciation taxa to determine how these patterns may be related to the genomic architecture of RI. Our plant literature survey revealed variation in barrier complexity and an association between barrier number and introgressive gene flow. Focusing on Populus, our genome-wide analysis of tree topologies in speciating poplar taxa points to unusually complex genomic architectures of RI, consistent with earlier genome-wide association studies. These architectures appear to facilitate the 'escape' of introgressed genome segments from polygenic barriers even with strong RI, thus affecting their relationships with recombination rates. Placed within the context of the broader literature, our data illustrate how phylogenomic approaches hold great promise for addressing the evolution and temporary breakdown of RI during late stages of speciation. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Assuntos
Populus/genética , Isolamento Reprodutivo , Filogenia
4.
New Phytol ; 224(3): 1035-1047, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31505037

RESUMO

Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (1) the two-way interaction between introgression and the evolution of reproductive systems, and (2) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation.


Assuntos
Fluxo Gênico , Hibridização Genética , Plantas/genética , Alelos , Simulação por Computador , Cruzamentos Genéticos , Modelos Biológicos , Reprodução/genética , Isolamento Reprodutivo , Autoincompatibilidade em Angiospermas/fisiologia
5.
New Phytol ; 224(3): 1108-1120, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31291691

RESUMO

Understanding the mechanisms causing phenotypic differences between females and males has long fascinated evolutionary biologists. An extensive literature exists on animal sexual dimorphism but less information is known about sex differences in plants, particularly the extent of geographical variation in sexual dimorphism and its life-cycle dynamics. Here, we investigated patterns of genetically based sexual dimorphism in vegetative and reproductive traits of a wind-pollinated dioecious plant, Rumex hastatulus, across three life-cycle stages using open-pollinated families from 30 populations spanning the geographic range and chromosomal variation (XY and XY1 Y2 ) of the species. The direction and degree of sexual dimorphism was highly variable among populations and life-cycle stages. Sex-specific differences in reproductive function explained a significant amount of temporal change in sexual dimorphism. For several traits, geographical variation in sexual dimorphism was associated with bioclimatic parameters, likely due to the differential responses of the sexes to climate. We found no systematic differences in sexual dimorphism between chromosome races. Sex-specific trait differences in dioecious plants largely result from a balance between sexual and natural selection on resource allocation. Our results indicate that abiotic factors associated with geographical context also play a role in modifying sexual dimorphism during the plant life-cycle.


Assuntos
Geografia , Polinização/fisiologia , Rumex/fisiologia , Caracteres Sexuais , Vento , Cromossomos de Plantas/genética , Característica Quantitativa Herdável , Reprodução , Temperatura
6.
Genetics ; 209(3): 861-883, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29716955

RESUMO

Self-incompatibility (SI) is a genetically based recognition system that functions to prevent self-fertilization and mating among related plants. An enduring puzzle in SI is how the high diversity observed in nature arises and is maintained. Based on the underlying recognition mechanism, SI can be classified into two main groups: self-recognition (SR) and nonself-recognition (NSR). Most work has focused on diversification within SR systems despite expected differences between the two groups in the evolutionary pathways and outcomes of diversification. Here, we use a deterministic population genetic model and stochastic simulations to investigate how novel S-haplotypes evolve in a gametophytic NSR [SRNase/S Locus F-box (SLF)] SI system. For this model, the pathways for diversification involve either the maintenance or breakdown of SI and can vary in the order of mutations of the female (SRNase) and male (SLF) components. We show analytically that diversification can occur with high inbreeding depression and self-pollination, but this varies with evolutionary pathway and level of completeness (which determines the number of potential mating partners in the population), and, in general, is more likely for lower haplotype number. The conditions for diversification are broader in stochastic simulations of finite population size. However, the number of haplotypes observed under high inbreeding and moderate-to-high self-pollination is less than that commonly observed in nature. Diversification was observed through pathways that maintain SI as well as through self-compatible intermediates. Yet the lifespan of diversified haplotypes was sensitive to their level of completeness. By examining diversification in a NSR SI system, this model extends our understanding of the evolution and maintenance of haplotype diversity observed in a recognition system common in flowering plants.


Assuntos
Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Plantas/genética , Autoincompatibilidade em Angiospermas , Evolução Molecular , Haplótipos , Modelos Genéticos , Filogenia , Melhoramento Vegetal , Polinização , Processos Estocásticos
7.
Ecol Evol ; 3(3): 629-39, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23532761

RESUMO

Negative frequency-dependent selection should result in equal sex ratios in large populations of dioecious flowering plants, but deviations from equality are commonly reported. A variety of ecological and genetic factors can explain biased sex ratios, although the mechanisms involved are not well understood. Most dioecious species are long-lived and/or clonal complicating efforts to identify stages during the life cycle when biases develop. We investigated the demographic correlates of sex-ratio variation in two chromosome races of Rumex hastatulus, an annual, wind-pollinated colonizer of open habitats from the southern USA. We examined sex ratios in 46 populations and evaluated the hypothesis that the proximity of males in the local mating environment, through its influence on gametophytic selection, is the primary cause of female-biased sex ratios. Female-biased sex ratios characterized most populations of R. hastatulus (mean sex ratio = 0.62), with significant female bias in 89% of populations. Large, high-density populations had the highest proportion of females, whereas smaller, low-density populations had sex ratios closer to equality. Progeny sex ratios were more female biased when males were in closer proximity to females, a result consistent with the gametophytic selection hypothesis. Our results suggest that interactions between demographic and genetic factors are probably the main cause of female-biased sex ratios in R. hastatulus. The annual life cycle of this species may limit the scope for selection against males and may account for the weaker degree of bias in comparison with perennial Rumex species.

8.
Evolution ; 67(3): 661-72, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23461317

RESUMO

Dioecious plant species commonly exhibit deviations from the equilibrium expectation of 1:1 sex ratio, but the mechanisms governing this variation are poorly understood. Here, we use comparative analyses of 243 species, representing 123 genera and 61 families to investigate ecological and genetic correlates of variation in the operational (flowering) sex ratio. After controlling for phylogenetic nonindependence, we examined the influence of growth form, clonality, fleshy fruits, pollen and seed dispersal vector, and the possession of sex chromosomes on sex-ratio variation. Male-biased flowering sex ratios were twice as common as female-biased ratios. Male bias was associated with long-lived growth forms (e.g., trees) and biotic seed dispersal and fleshy fruits, whereas female bias was associated with clonality, especially for herbaceous species, and abiotic pollen dispersal. Female bias occurred in species with sex chromosomes and there was some evidence for a greater degree of bias in those with heteromorphic sex chromosomes. Although the role of interactions among these correlates require further study, our results indicate that sex-based differences in costs of reproduction, pollen and seed dispersal mechanisms and sex chromosomes can each play important roles in affecting flowering sex ratios in dioecious plants.


Assuntos
Flores/fisiologia , Magnoliopsida/fisiologia , Modelos Lineares , Filogenia , Razão de Masculinidade
9.
Ann Bot ; 111(5): 917-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23444124

RESUMO

BACKGROUND AND AIMS: Populations of dioecious flowering plants commonly exhibit heterogeneity in sex ratios and deviations from the equilibrium expectation of equal numbers of females and males. Yet the role of ecological and demographic factors in contributing towards biased sex ratios is currently not well understood. METHODS: Species-level studies from the literature were analysed to investigate ecological correlates of among-population sex-ratio variation and metapopulation models and empirical data were used to explore the influence of demography and non-equilibrium conditions on flowering sex ratios. KEY RESULTS: The survey revealed significant among-population heterogeneity in sex ratios and this was related to the degree of sampling effort. For some species, sex-ratio bias was associated with the proportion of non-reproductive individuals, with greater male bias in populations with a lower proportion of individuals that were flowering. Male-biased ratios were also found at higher altitudes and latitudes, and in more xeric sites. Simulations and empirical data indicated that clonal species exhibited greater heterogeneity in sex ratios than non-clonal species as a result of their slower approach to equilibrium. The simulations also indicated the importance of interactions between reproductive mode and founder effects, with greater departures from equilibrium in clonal populations with fewer founding individuals. CONCLUSIONS: The results indicate that sex-based differences in costs of reproduction and non-equilibrium conditions can each play important roles in affecting flowering sex ratios in populations of dioecious plants.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Modelos Logísticos , Dinâmica Populacional , Reprodução/fisiologia , Estresse Fisiológico
10.
Biol Lett ; 8(2): 245-8, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22048889

RESUMO

Variation in the timing of reproductive functions in dioecious organisms may result in adaptive changes in the direction of sexual dimorphism during the breeding season. For plants in which both pollen and seeds are wind-dispersed, it may be advantageous for male plants to be taller when pollen is dispersed and female plants to be taller when seeds are dispersed. We examined the dynamics of height dimorphism in Rumex hastatulus, an annual, wind-pollinated, dioecious plant from the southern USA. A field survey of seven populations indicated that females were significantly taller than males at seed maturity. However, a glasshouse experiment revealed a more complex pattern of height growth during the life cycle. No dimorphism was evident prior to reproduction for six of seven populations, but at flowering, males were significantly taller than females in all populations. This pattern was reversed at reproductive maturity, consistent with field observations. Males flowered later than females and the degree of height dimorphism was greater in populations with a later onset of male flowering. We discuss the potential adaptive significance of temporal changes in height dimorphism for pollen and seed dispersal, and how this may be optimized for the contrasting reproductive functions of the sexes.


Assuntos
Polinização , Rumex/crescimento & desenvolvimento , Dispersão de Sementes , Rumex/fisiologia , Fatores de Tempo , Estados Unidos , Vento
11.
Evol Appl ; 5(8): 913-24, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23346235

RESUMO

Understanding patterns and correlates of local adaptation in heterogeneous landscapes can provide important information in the selection of appropriate seed sources for restoration. We assessed the extent of local adaptation of fitness components in 12 population pairs of the perennial herb Rutidosis leptorrhynchoides (Asteraceae) and examined whether spatial scale (0.7-600 km), environmental distance, quantitative (Q(ST)) and neutral (F(ST)) genetic differentiation, and size of the local and foreign populations could predict patterns of adaptive differentiation. Local adaptation varied among populations and fitness components. Including all population pairs, local adaptation was observed for seedling survival, but not for biomass, while foreign genotype advantage was observed for reproduction (number of inflorescences). Among population pairs, local adaptation increased with Q(ST) and local population size for biomass. Q(ST) was associated with environmental distance, suggesting ecological selection for phenotypic divergence. However, low F(ST) and variation in population structure in small populations demonstrates the interaction of gene flow and drift in constraining local adaptation in R. leptorrhynchoides. Our study indicates that for species in heterogeneous landscapes, collecting seed from large populations from similar environments to candidate sites is likely to provide the most appropriate seed sources for restoration.

12.
Philos Trans R Soc Lond B Biol Sci ; 365(1552): 2549-57, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20643745

RESUMO

In many angiosperm species, populations are reproductively subdivided into distinct sexual morphs including females, males and hermaphrodites. Sexual polymorphism is maintained by frequency-dependent selection, leading to predictable sex ratios at equilibrium. Charles Darwin devoted much of his book 'The Different Forms of Flowers on Plants of the Same Species' (1877) to investigating plant sexual polymorphisms and laid the foundation for many problems addressed today by integrating theory with empirical studies of the demography and genetics of populations. Here, we summarize our recent work on the ecological and genetic mechanisms influencing variation in sex ratios and their implications for evolutionary transitions among sexual systems. We present the results of a survey of sex ratios from 126 species from 47 angiosperm families and then address two general problems using examples from diverse angiosperm taxa: (i) the mechanisms governing biased sex ratios in dioecious species; (ii) the origins and maintenance of populations composed of females, males and hermaphrodites. Several themes are emphasized, including the importance of non-equilibrium conditions, the role of life history and demography in affecting sex ratios, the value of theory for modelling the dynamics of sex ratio variation, and the utility of genetic markers for investigating evolutionary processes in sexually polymorphic plant populations.


Assuntos
Evolução Biológica , Genética Populacional , Modelos Biológicos , Plantas/genética , Polimorfismo Genético , Razão de Masculinidade , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...