Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Mol Syst Biol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702390

RESUMO

The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis-mass spectrometry (LiP-MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP-MS detects well-characterized PPIs, including antibody-target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson's disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states.

2.
Nat Chem Biol ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424171

RESUMO

Organisms use organic molecules called osmolytes to adapt to environmental conditions. In vitro studies indicate that osmolytes thermally stabilize proteins, but mechanisms are controversial, and systematic studies within the cellular milieu are lacking. We analyzed Escherichia coli and human protein thermal stabilization by osmolytes in situ and across the proteome. Using structural proteomics, we probed osmolyte effects on protein thermal stability, structure and aggregation, revealing common mechanisms but also osmolyte- and protein-specific effects. All tested osmolytes (trimethylamine N-oxide, betaine, glycerol, proline, trehalose and glucose) stabilized many proteins, predominantly via a preferential exclusion mechanism, and caused an upward shift in temperatures at which most proteins aggregated. Thermal profiling of the human proteome provided evidence for intrinsic disorder in situ but also identified potential structure in predicted disordered regions. Our analysis provides mechanistic insight into osmolyte function within a complex biological matrix and sheds light on the in situ prevalence of intrinsically disordered regions.

3.
EMBO Rep ; 25(3): 1513-1540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351373

RESUMO

Membrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca2+ signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.5 Å resolution cryo-EM structure of the bovine AC8 bound to the stimulatory Gαs protein in the presence of Ca2+/CaM. The structure reveals the architecture of the ordered AC8 domains bound to Gαs and the small molecule activator forskolin. The extracellular surface of AC8 features a negatively charged pocket, a potential site for unknown interactors. Despite the well-resolved forskolin density, the captured state of AC8 does not favour tight nucleotide binding. The structural proteomics approaches, limited proteolysis and crosslinking mass spectrometry (LiP-MS and XL-MS), allowed us to identify the contact sites between AC8 and its regulators, CaM, Gαs, and Gßγ, as well as to infer the conformational changes induced by these interactions. Our results provide a framework for understanding the role of flexible regions in the mechanism of AC regulation.


Assuntos
Adenilil Ciclases , Calmodulina , Animais , Bovinos , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Colforsina/farmacologia , Microscopia Crioeletrônica , Proteômica , Proteínas de Ligação ao GTP/metabolismo
4.
Mol Syst Biol ; 20(4): 403-427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287148

RESUMO

For years, proteasomal degradation was predominantly attributed to the ubiquitin-26S proteasome pathway. However, it is now evident that the core 20S proteasome can independently target proteins for degradation. With approximately half of the cellular proteasomes comprising free 20S complexes, this degradation mechanism is not rare. Identifying 20S-specific substrates is challenging due to the dual-targeting of some proteins to either 20S or 26S proteasomes and the non-specificity of proteasome inhibitors. Consequently, knowledge of 20S proteasome substrates relies on limited hypothesis-driven studies. To comprehensively explore 20S proteasome substrates, we employed advanced mass spectrometry, along with biochemical and cellular analyses. This systematic approach revealed hundreds of 20S proteasome substrates, including proteins undergoing specific N- or C-terminal cleavage, possibly for regulation. Notably, these substrates were enriched in RNA- and DNA-binding proteins with intrinsically disordered regions, often found in the nucleus and stress granules. Under cellular stress, we observed reduced proteolytic activity in oxidized proteasomes, with oxidized protein substrates exhibiting higher structural disorder compared to unmodified proteins. Overall, our study illuminates the nature of 20S substrates, offering crucial insights into 20S proteasome biology.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Proteólise
6.
Mol Cell ; 83(18): 3360-3376.e11, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37699397

RESUMO

Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry (LiP-MS). The results, compiled in online ProtAge catalog, unraveled age-related functional changes in regulators of translation, protein folding, and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging, causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction, and led to lifespan extension. Altogether, this comprehensive map of protein structural changes enables identifying mechanisms of age-related phenotypes and offers opportunities for their reversal.


Assuntos
Senescência Celular , Longevidade , Longevidade/genética , Polimerização , Aminoácidos
7.
Elife ; 122023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535063

RESUMO

Gap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now. Here, we describe the structure of a human Cx43 GJC solved by cryo-EM and single particle analysis at 2.26 Å resolution. The pore region of Cx43 GJC features several lipid-like densities per Cx43 monomer, located close to a putative lateral access site at the monomer boundary. We found a previously undescribed conformation on the cytosolic side of the pore, formed by the N-terminal domain and the transmembrane helix 2 of Cx43 and stabilized by a small molecule. Structures of the Cx43 GJC and hemichannels (HCs) in nanodiscs reveal a similar gate arrangement. The features of the Cx43 GJC and HC cryo-EM maps and the channel properties revealed by molecular dynamics simulations suggest that the captured states of Cx43 are consistent with a closed state.


Assuntos
Conexina 43 , Junções Comunicantes , Humanos , Comunicação Celular/fisiologia , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/fisiologia
8.
Sci Adv ; 9(35): eadh4890, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647412

RESUMO

In myelinating Schwann cells, connection between myelin layers is mediated by gap junction channels (GJCs) formed by docked connexin 32 (Cx32) hemichannels (HCs). Mutations in Cx32 cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a degenerative neuropathy without a cure. A molecular link between Cx32 dysfunction and CMT1X pathogenesis is still missing. Here, we describe the high-resolution cryo-electron cryo-myography (cryo-EM) structures of the Cx32 GJC and HC, along with two CMT1X-linked mutants, W3S and R22G. While the structures of wild-type and mutant GJCs are virtually identical, the HCs show a major difference: In the W3S and R22G mutant HCs, the amino-terminal gating helix partially occludes the pore, consistent with a diminished HC activity. Our results suggest that HC dysfunction may be involved in the pathogenesis of CMT1X.


Assuntos
Doença de Charcot-Marie-Tooth , Conexinas , Humanos , Conexinas/genética , Canais Iônicos , Doença de Charcot-Marie-Tooth/genética , Junções Comunicantes/genética , Proteína beta-1 de Junções Comunicantes
9.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562848

RESUMO

Mycobacteria and other actinobacteria possess proteasomal degradation pathways in addition to the common bacterial compartmentalizing protease systems. Proteasomal degradation plays a crucial role in the survival of these bacteria in adverse environments. The mycobacterial proteasome interacts with several ring-shaped activators, including the bacterial proteasome activator (Bpa), which enables energy-independent degradation of heat shock repressor HspR. However, the mechanism of substrate selection and processing by the Bpa-proteasome complex remains unclear. In this study, we present evidence that disorder in substrates is required but not sufficient for recruitment to Bpa-mediated proteasomal degradation. We demonstrate that Bpa binds to the folded N-terminal helix-turn-helix domain of HspR, whereas the unstructured C-terminal tail of the substrate acts as a sequence-specific threading handle to promote efficient proteasomal degradation. In addition, we establish that the heat shock chaperone DnaK, which interacts with and co-regulates HspR, stabilizes HspR against Bpa-mediated proteasomal degradation. By phenotypical characterization of Mycobacterium smegmatis parent and bpa deletion mutant strains, we show that Bpa-dependent proteasomal degradation supports the survival of the bacterium under stress conditions by degrading HspR that regulates vital chaperones.


Assuntos
Proteínas de Choque Térmico , Mycobacterium tuberculosis , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Chaperonas Moleculares/metabolismo , Trifosfato de Adenosina/metabolismo
10.
Mol Syst Biol ; 19(8): e11493, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37485750

RESUMO

The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.


Assuntos
Herança Multifatorial , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fenótipo
11.
Proc Natl Acad Sci U S A ; 120(15): e2300309120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011209

RESUMO

Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions. Here, we provide the structural characterization for CaM regulation of a CNG channel by using a combination of single-particle cryo-electron microscopy and structural proteomics. CaM connects the CNGA and CNGB subunits, resulting in structural changes both in the cytosolic and transmembrane regions of the channel. Cross-linking and limited proteolysis-coupled mass spectrometry mapped the conformational changes induced by CaM in vitro and in the native membrane. We propose that CaM is a constitutive subunit of the rod channel to ensure high sensitivity in dim light. Our mass spectrometry-based approach is generally relevant for studying the effect of CaM on ion channels in tissues of medical interest, where only minute quantities are available.


Assuntos
Calmodulina , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Calmodulina/metabolismo , Ativação do Canal Iônico/fisiologia , Microscopia Crioeletrônica , Cálcio/metabolismo , Nucleotídeos Cíclicos/farmacologia , GMP Cíclico/metabolismo
13.
Nat Protoc ; 18(3): 659-682, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36526727

RESUMO

Proteins regulate biological processes by changing their structure or abundance to accomplish a specific function. In response to a perturbation, protein structure may be altered by various molecular events, such as post-translational modifications, protein-protein interactions, aggregation, allostery or binding to other molecules. The ability to probe these structural changes in thousands of proteins simultaneously in cells or tissues can provide valuable information about the functional state of biological processes and pathways. Here, we present an updated protocol for LiP-MS, a proteomics technique combining limited proteolysis with mass spectrometry, to detect protein structural alterations in complex backgrounds and on a proteome-wide scale. In LiP-MS, proteins undergo a brief proteolysis in native conditions followed by complete digestion in denaturing conditions, to generate structurally informative proteolytic fragments that are analyzed by mass spectrometry. We describe advances in the throughput and robustness of the LiP-MS workflow and implementation of data-independent acquisition-based mass spectrometry, which together achieve high reproducibility and sensitivity, even on large sample sizes. We introduce MSstatsLiP, an R package dedicated to the analysis of LiP-MS data for the identification of structurally altered peptides and differentially abundant proteins. The experimental procedures take 3 d, mass spectrometric measurement time and data processing depend on sample number and statistical analysis typically requires ~1 d. These improvements expand the adaptability of LiP-MS and enable wide use in functional proteomics and translational applications.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma , Proteólise , Proteoma/análise , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos
14.
Methods Mol Biol ; 2554: 69-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36178621

RESUMO

Metabolite-protein interactions regulate diverse cellular processes, prompting the development of methods to investigate the metabolite-protein interactome at a global scale. One such method is our previously developed structural proteomics approach, limited proteolysis-mass spectrometry (LiP-MS), which detects proteome-wide metabolite-protein and drug-protein interactions in native bacterial, yeast, and mammalian systems, and allows identification of binding sites without chemical modification. Here we describe a detailed experimental and analytical workflow for conducting a LiP-MS experiment to detect small molecule-protein interactions, either in a single-dose (LiP-SMap) or a multiple-dose (LiP-Quant) format. LiP-Quant analysis combines the peptide-level resolution of LiP-MS with a machine learning-based framework to prioritize true protein targets of a small molecule of interest. We provide an updated R script for LiP-Quant analysis via a GitHub repository accessible at https://github.com/RolandBruderer/MiMB-LiP-Quant .


Assuntos
Proteoma , Proteômica , Animais , Mamíferos/metabolismo , Espectrometria de Massas/métodos , Peptídeos/metabolismo , Proteólise , Proteoma/metabolismo , Proteômica/métodos
15.
Plants (Basel) ; 11(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432905

RESUMO

During evolution, plants have faced countless stresses of both biotic and abiotic nature developing very effective mechanisms able to perceive and counteract adverse signals. The biggest challenge is the ability to fine-tune the trade-off between plant growth and stress resistance. The Antarctic plant Colobanthus quitensis has managed to survive the adverse environmental conditions of the white continent and can be considered a wonderful example of adaptation to prohibitive conditions for millions of other plant species. Due to the progressive environmental change that the Antarctic Peninsula has undergone over time, a more comprehensive overview of the metabolic features of C. quitensis becomes particularly interesting to assess its ability to respond to environmental stresses. To this end, a differential proteomic approach was used to study the response of C. quitensis to different environmental cues. Many differentially expressed proteins were identified highlighting the rewiring of metabolic pathways as well as defense responses. Finally, a different modulation of oxidative stress response between different environmental sites was observed. The data collected in this paper add knowledge on the impact of environmental stimuli on plant metabolism and stress response by providing useful information on the trade-off between plant growth and defense mechanisms.

16.
Cell Rep ; 41(8): 111689, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417879

RESUMO

Calreticulin (CALR) is an endoplasmic reticulum (ER)-retained chaperone that assists glycoproteins in obtaining their structure. CALR mutations occur in patients with myeloproliferative neoplasms (MPNs), and the ER retention of CALR mutants (CALR MUT) is reduced due to a lacking KDEL sequence. Here, we investigate the impact of CALR mutations on protein structure and protein levels in MPNs by subjecting primary patient samples and CALR-mutated cell lines to limited proteolysis-coupled mass spectrometry (LiP-MS). Especially glycoproteins are differentially expressed and undergo profound structural alterations in granulocytes and cell lines with homozygous, but not with heterozygous, CALR mutations. Furthermore, homozygous CALR mutations and loss of CALR equally perturb glycoprotein integrity, suggesting that loss-of-function attributes of mutated CALR chaperones (CALR MUT) lead to glycoprotein maturation defects. Finally, by investigating the misfolding of the CALR glycoprotein client myeloperoxidase (MPO), we provide molecular proof of protein misfolding in the presence of homozygous CALR mutations.


Assuntos
Calreticulina , Transtornos Mieloproliferativos , Humanos , Calreticulina/genética , Calreticulina/química , Calreticulina/metabolismo , Mutação/genética , Homozigoto , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo
17.
Nat Struct Mol Biol ; 29(10): 978-989, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224378

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disease for which robust biomarkers are needed. Because protein structure reflects function, we tested whether global, in situ analysis of protein structural changes provides insight into PD pathophysiology and could inform a new concept of structural disease biomarkers. Using limited proteolysis-mass spectrometry (LiP-MS), we identified 76 structurally altered proteins in cerebrospinal fluid (CSF) of individuals with PD relative to healthy donors. These proteins were enriched in processes misregulated in PD, and some proteins also showed structural changes in PD brain samples. CSF protein structural information outperformed abundance information in discriminating between healthy participants and those with PD and improved the discriminatory performance of CSF measures of the hallmark PD protein α-synuclein. We also present the first analysis of inter-individual variability of a structural proteome in healthy individuals, identifying biophysical features of variable protein regions. Although independent validation is needed, our data suggest that global analyses of the human structural proteome will guide the development of novel structural biomarkers of disease and enable hypothesis generation about underlying disease processes.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Biomarcadores , Humanos , Proteoma/metabolismo , alfa-Sinucleína/metabolismo
18.
J Hematol Oncol ; 15(1): 123, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045419

RESUMO

The vast majority of our knowledge regarding cancer radiobiology and the activation of radioresistance mechanisms emerged from studies using external beam radiation therapy (EBRT). Yet, less is known about the cancer response to internal targeted radionuclide therapy (TRT). Our comparative phosphoproteomics analyzed cellular responses to TRT with lutetium-177-labeled minigastrin analogue [177Lu]Lu-PP-F11N (ß-emitter) and EBRT (É£-rays) in CCKBR-positive cancer cells. Activation of DNA damage response by p53 was induced by both types of radiotherapy, whereas TRT robustly increased activation of signaling pathways including epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs) or integrin receptor. Inhibition of EGFR or integrin signaling sensitized cancer cells to radiolabeled minigastrin. In vivo, EGFR inhibitor erlotinib increased therapeutic response to [177Lu]Lu-PP-F11N and median survival of A431/CCKBR-tumor bearing nude mice. In summary, our study explores a complex scenario of cancer responses to different types of irradiation and pinpoints the radiosensitizing strategy, based on the targeting survival pathways, which are activated by TRT.


Assuntos
Neoplasias , Radioisótopos , Animais , Linhagem Celular Tumoral , Receptores ErbB , Integrinas , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioisótopos/uso terapêutico
19.
Elife ; 112022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35980026

RESUMO

Mycobacterium tuberculosis adenylyl cyclase (AC) Rv1625c/Cya is an evolutionary ancestor of the mammalian membrane ACs and a model system for studies of their structure and function. Although the vital role of ACs in cellular signalling is well established, the function of their transmembrane (TM) regions remains unknown. Here, we describe the cryo-EM structure of Cya bound to a stabilizing nanobody at 3.6 Å resolution. The TM helices 1-5 form a structurally conserved domain that facilitates the assembly of the helical and catalytic domains. The TM region contains discrete pockets accessible from the extracellular and cytosolic side of the membrane. Neutralization of the negatively charged extracellular pocket Ex1 destabilizes the cytosolic helical domain and reduces the catalytic activity of the enzyme. The TM domain acts as a functional component of Cya, guiding the assembly of the catalytic domain and providing the means for direct regulation of catalytic activity in response to extracellular ligands.


Assuntos
Adenilil Ciclases , Mycobacterium tuberculosis , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Domínio Catalítico , Mamíferos/metabolismo , Mycobacterium tuberculosis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...