Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(23): 5104, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32310336

RESUMO

Invited for the cover of this issue is Josip Pozar with collaborators from the University of Zagreb. The image depicts the differences in high- and low-temperature water effect on the complexation thermodynamics of adamantyl mannoside with ß-cyclodextrin. Read the full text of the article at 10.1002/chem.202000282.

2.
Chemistry ; 26(23): 5208-5219, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31999026

RESUMO

The effects of solvent and temperature on the complexation of adamantyl mannoside with ß-cyclodextrin and 6-O-monotosyl-6-deoxy-ß-cyclodextrin were explored experimentally and by means of molecular dynamics simulations. Efficient binding was observed only in hydrogen-bonded solvents, which indicated solvophobically driven complexation. The stability of the inclusion complex was considerably higher in aqueous media. A pronounced temperature dependence of Δr H○ and Δr S○ , resulting in perfect enthalpy-entropy compensation, was observed in water. The complexation thermodynamics was in line with classical rationale for the hydrophobic effect at lower temperatures and the nonclassical explanation at higher temperatures. This finding linked cyclodextrin complexation thermodynamics with insights regarding the effect of temperature on the hydration water structure. The complexation enthalpies and entropies were weakly dependent on temperature in organic media. The signs of Δr H○ and Δr S○ were in accordance with the nonclassical hydrophobic (solvophobic) effect. The structures of the optimized product corresponded to those deduced spectroscopically, and the calculated and experimentally obtained values of Δr G○ were in very good agreement. This investigation clearly demonstrated that solvophobically driven formation of cyclodextrin complexes could be anticipated in structured solvents in general. However, unlike in water, adamantane and the host cavity behaved solely as structure breakers in the organic media explored so far.

3.
Org Biomol Chem ; 16(6): 904-912, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29308493

RESUMO

Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites. In this context, we prepared neutral, water-soluble receptors with secondary or tertiary amide coordinating groups, and studied their complexation with alkali metal cations in aqueous and methanol (for the comparison purpose) solutions. Complexation thermodynamics was quantitatively characterized by UV spectrometry and isothermal titration calorimetry, revealing that one of the prepared tertiary amide derivatives is capable of remarkably efficient (log K ≈ 5) and selective binding of sodium cations among alkali metal cations in water. Given the ease of the synthetic procedure used, and thus the variety of accessible analogues, this study can serve as a platform for the development of reagents for diverse purposes in aqueous media.

4.
J Phys Chem B ; 121(36): 8539-8550, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28805386

RESUMO

The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na+ cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL+ complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL+ stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA