Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 566(7745): 558-562, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30778195

RESUMO

The genomes of multicellular organisms are extensively folded into 3D chromosome territories within the nucleus1. Advanced 3D genome-mapping methods that combine proximity ligation and high-throughput sequencing (such as chromosome conformation capture, Hi-C)2, and chromatin immunoprecipitation techniques (such as chromatin interaction analysis by paired-end tag sequencing, ChIA-PET)3, have revealed topologically associating domains4 with frequent chromatin contacts, and have identified chromatin loops mediated by specific protein factors for insulation and regulation of transcription5-7. However, these methods rely on pairwise proximity ligation and reflect population-level views, and thus cannot reveal the detailed nature of chromatin interactions. Although single-cell Hi-C8 potentially overcomes this issue, this method may be limited by the sparsity of data that is inherent to current single-cell assays. Recent advances in microfluidics have opened opportunities for droplet-based genomic analysis9 but this approach has not yet been adapted for chromatin interaction analysis. Here we describe a strategy for multiplex chromatin-interaction analysis via droplet-based and barcode-linked sequencing, which we name ChIA-Drop. We demonstrate the robustness of ChIA-Drop in capturing complex chromatin interactions with single-molecule precision, which has not been possible using methods based on population-level pairwise contacts. By applying ChIA-Drop to Drosophila cells, we show that chromatin topological structures predominantly consist of multiplex chromatin interactions with high heterogeneity; ChIA-Drop also reveals promoter-centred multivalent interactions, which provide topological insights into transcription.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Microfluídica/métodos , Análise de Sequência de DNA/métodos , Imagem Individual de Molécula/métodos , Imagem Individual de Molécula/normas , Animais , Sítios de Ligação/genética , Linhagem Celular , Cromatina/química , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Microfluídica/normas , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transcrição Gênica
2.
Cell Rep ; 26(3): 788-801.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650367

RESUMO

EndoC-ßH1 is emerging as a critical human ß cell model to study the genetic and environmental etiologies of ß cell (dys)function and diabetes. Comprehensive knowledge of its molecular landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal (spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of EndoC-ßH1. Analyses of these maps define known (e.g., PDX1 and ISL1) and putative (e.g., PCSK1 and mir-375) ß cell-specific transcriptional cis-regulatory networks and identify allelic effects on cis-regulatory element use. Importantly, comparison with maps generated in primary human islets and/or ß cells indicates preservation of chromatin looping but also highlights chromosomal aberrations and fetal genomic signatures in EndoC-ßH1. Together, these maps, and a web application we created for their exploration, provide important tools for the design of experiments to probe and manipulate the genetic programs governing ß cell identity and (dys)function in diabetes.


Assuntos
Redes Reguladoras de Genes/genética , Células Secretoras de Insulina/metabolismo , Linhagem Celular , Humanos
3.
Nat Protoc ; 12(5): 899-915, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28358394

RESUMO

Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is a robust method for capturing genome-wide chromatin interactions. Unlike other 3C-based methods, it includes a chromatin immunoprecipitation (ChIP) step that enriches for interactions mediated by specific target proteins. This unique feature allows ChIA-PET to provide the functional specificity and higher resolution needed to detect chromatin interactions, which chromosome conformation capture (3C)/Hi-C approaches have not achieved. The original ChIA-PET protocol generates short paired-end tags (2 × 20 base pairs (bp)) to detect two genomic loci that are far apart on linear chromosomes but are in spatial proximity in the folded genome. We have improved the original approach by developing long-read ChIA-PET, in which the length of the paired-end tags is increased (up to 2 × 250 bp). The longer PET reads not only improve the tag-mapping efficiency but also increase the probability of covering phased single-nucleotide polymorphisms (SNPs), which allows haplotype-specific chromatin interactions to be identified. Here, we provide the detailed protocol for long-read ChIA-PET that includes cell fixation and lysis, chromatin fragmentation by sonication, ChIP, proximity ligation with a bridge linker, Tn5 tagmentation, PCR amplification and high-throughput sequencing. For a well-trained molecular biologist, it typically takes 6 d from cell harvesting to the completion of library construction, up to a further 36 h for DNA sequencing and <20 h for processing of raw sequencing reads.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Técnicas Citológicas/métodos , DNA/genética , DNA/metabolismo , Haplótipos , Análise de Sequência de DNA/métodos , Animais , Humanos , Ligação Proteica
4.
Cell ; 163(7): 1611-27, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26686651

RESUMO

Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.


Assuntos
Cromatina/química , Genoma Humano , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Empacotamento do DNA , Humanos , RNA Polimerase II/metabolismo , Salamandridae , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...