Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Pulm Med ; 24(1): 127, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475751

RESUMO

BACKGROUND: The 2017 ATS/ERS technical standard for measuring the single-breath diffusing capacity (DLCO) proposed the "rapid-gas-analyzer" (RGA) or, equivalently, "total-breath" (TB) method for the determination of total lung capacity (TLC). In this study, we compared DLCO and TLC values estimated using the TB and conventional method, and how estimated TLC using these two methods compared to that determined by body plethysmography. METHOD: A total of 95 people with COPD (GOLD grades 1-4) and 23 healthy subjects were studied using the EasyOne Pro (ndd Medical Technologies, Switzerland) and Master Screen Body (Vyaire Medical, Höchberg, Germany). RESULTS: On average the TB method resulted in higher values of DLCO (mean ± SD Δ = 0.469 ± 0.267; 95%CI: 0.420; 0.517 mmol*min-1*kPa-1) and TLC (Δ = 0.495 ± 0.371; 95%CI: 0.427; 0.562 L) compared with the conventional method. In healthy subjects the ratio between TB and conventional DLCO was close to one. TLC estimated using both methods was lower than that determined by plethysmography. The difference was smaller for the TB method (Δ = 1.064 ± 0.740; 95%CI: 0.929; 1.199 L) compared with the conventional method (Δ = 1.558 ± 0.940; 95%CI: 1.387; 1.739 L). TLC from body plethysmography could be estimated as a function of TB TLC and FEV1 Z-Score with an accuracy (normalized root mean square difference) of 9.1%. CONCLUSION: The total-breath method yielded higher values of DLCO and TLC than the conventional analysis, especially in subjects with COPD. TLC from the total-breath method can also be used to estimate plethysmographic TLC with better accuracy than the conventional method. The study is registered under clinicaltrial.gov NCT04531293.


Assuntos
Capacidade de Difusão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Humanos , Alemanha , Testes de Função Respiratória , Capacidade Pulmonar Total
2.
Int J Chron Obstruct Pulmon Dis ; 17: 2723-2743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304971

RESUMO

Background: A significant proportion of patients with obstructive lung disease have clinical and functional features of both asthma and chronic obstructive pulmonary disease (COPD), referred to as the asthma-COPD overlap (ACO). The distinction of these phenotypes, however, is not yet well-established due to the lack of defining clinical and/or functional criteria. The aim of our investigations was to assess the discriminating power of various lung function parameters on the assessment of ACO. Methods: From databases of 4 pulmonary centers, a total of 540 patients (231 males, 309 females), including 372 patients with asthma, 77 patients with ACO and 91 patients with COPD, were retrospectively collected, and gradients among combinations of explanatory variables of spirometric (FEV1, FEV1/FVC, FEF25-75), plethysmographic (sReff, sGeff, the aerodynamic work of breathing at rest; sWOB), static lung volumes, including trapped gases and measurements of the carbon monoxide transfer (DLCO, KCO) were explored using multiple factor analysis (MFA). The discriminating power of lung function parameters with respect to ACO was assessed using linear discriminant analysis (LDA). Results: LDA revealed that parameters of airway dynamics (sWOB, sReff, sGeff) combined with parameters of static lung volumes such as functional residual capacity (FRCpleth) and trapped gas at FRC (VTG FRC) are valuable and potentially important tools discriminating between asthma, ACO and COPD. Moreover, sWOB significantly contributes to the diagnosis of obstructive airway diseases, independent from the state of pulmonary hyperinflation, whilst the diffusion capacity for carbon monoxide (DLCO) significantly differentiates between the 3 diagnostic classes. Conclusion: The complexity of COPD with its components of interaction and their heterogeneity, especially in discrimination from ACO, may well be differentiated if patients are explored by a whole set of target parameters evaluating, interactionally, flow limitation, airway dynamics, pulmonary hyperinflation, small airways dysfunction and gas exchange disturbances assessing specific functional deficits.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Masculino , Feminino , Humanos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Volume Expiratório Forçado , Monóxido de Carbono , Estudos Retrospectivos , Asma/complicações , Asma/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA