Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 97, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622738

RESUMO

BACKGROUND: As most viruses remain uncultivated, metagenomics is currently the main method for virus discovery. Detecting viruses in metagenomic data is not trivial. In the past few years, many bioinformatic virus identification tools have been developed for this task, making it challenging to choose the right tools, parameters, and cutoffs. As all these tools measure different biological signals, and use different algorithms and training and reference databases, it is imperative to conduct an independent benchmarking to give users objective guidance. RESULTS: We compare the performance of nine state-of-the-art virus identification tools in thirteen modes on eight paired viral and microbial datasets from three distinct biomes, including a new complex dataset from Antarctic coastal waters. The tools have highly variable true positive rates (0-97%) and false positive rates (0-30%). PPR-Meta best distinguishes viral from microbial contigs, followed by DeepVirFinder, VirSorter2, and VIBRANT. Different tools identify different subsets of the benchmarking data and all tools, except for Sourmash, find unique viral contigs. Performance of tools improved with adjusted parameter cutoffs, indicating that adjustment of parameter cutoffs before usage should be considered. CONCLUSIONS: Together, our independent benchmarking facilitates selecting choices of bioinformatic virus identification tools and gives suggestions for parameter adjustments to viromics researchers.


Assuntos
Benchmarking , Vírus , Metagenoma , Ecossistema , Metagenômica/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Vírus/genética
2.
ISME Commun ; 3(1): 108, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789093

RESUMO

Through infection and lysis of their coexisting bacterial hosts, viruses impact the biogeochemical cycles sustaining globally significant pelagic oceanic ecosystems. Currently, little is known of the ecological interactions between lytic viruses and their bacterial hosts underlying these biogeochemical impacts at ecosystem scales. This study focused on populations of lytic viruses carrying the B12-dependent Class II monomeric ribonucleotide reductase (RNR) gene, ribonucleotide-triphosphate reductase (Class II RTPR), documenting seasonal changes in pelagic virioplankton and bacterioplankton using amplicon sequences of Class II RTPR and the 16S rRNA gene, respectively. Amplicon sequence libraries were analyzed using compositional data analysis tools that account for the compositional nature of these data. Both virio- and bacterioplankton communities responded to environmental changes typically seen across seasonal cycles as well as shorter term upwelling-downwelling events. Defining Class II RTPR-carrying viral populations according to major phylogenetic clades proved a more robust means of exploring virioplankton ecology than operational taxonomic units defined by percent sequence homology. Virioplankton Class II RTPR populations showed positive associations with a broad phylogenetic diversity of bacterioplankton including dominant taxa within pelagic oceanic ecosystems such as Prochlorococcus and SAR11. Temporal changes in Class II RTPR virioplankton, occurring as both free viruses and within infected cells, indicated possible viral-host pairs undergoing sustained infection and lysis cycles throughout the seasonal study. Phylogenetic relationships inferred from Class II RTPR sequences mirrored ecological patterns in virio- and bacterioplankton populations demonstrating possible genome to phenome associations for an essential viral replication gene.

3.
Viruses ; 10(12)2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501060

RESUMO

Arctic marine ecosystems are currently undergoing rapid changes in temperature and light availability. Picophytoplankton, such as Micromonas polaris, are predicted to benefit from such changes. However, little is known about how these environmental changes affect the viruses that exert a strong mortality pressure on these small but omnipresent algae. Here we report on one-step infection experiments, combined with measurements of host physiology and viability, with 2 strains of M. polaris and the virus MpoV-45T under 3 light intensities (5, 60 and 160 µmol quanta m-2 s-1), 2 light period regimes (16:8 and 24:0 h light:dark cycle) and 2 temperatures (3 and 7 °C). Our results show that low light intensity (16:8 h light:dark) delayed the decline in photosynthetic efficiency and cell lysis, while decreasing burst size by 46%. In contrast, continuous light (24:0 h light:dark) shortened the latent period by 5 h for all light intensities, and even increased the maximum virus production rate and burst size under low light (by 157 and 69%, respectively). Higher temperature (7 °C vs 3 °C) led to earlier cell lysis and increased burst size (by 19%), except for the low light conditions. These findings demonstrate the ecological importance of light in combination with temperature as a controlling factor for Arctic phytoplankton host and virus dynamics seasonally, even more so in the light of global warming.


Assuntos
Clorófitas/virologia , Vírus de Plantas/fisiologia , Vírus de Plantas/efeitos da radiação , Radiação , Temperatura , Regiões Árticas , Clorófitas/metabolismo , Mudança Climática , Interações Hospedeiro-Patógeno , Luz , Fotossíntese , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA