Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(7): 104834, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201585

RESUMO

Chromatin organization is highly dynamic and modulates DNA replication, transcription, and chromosome segregation. Condensin is essential for chromosome assembly during mitosis and meiosis, as well as maintenance of chromosome structure during interphase. While it is well established that sustained condensin expression is necessary to ensure chromosome stability, the mechanisms that control its expression are not yet known. Herein, we report that disruption of cyclin-dependent kinase 7 (CDK7), the core catalytic subunit of CDK-activating kinase, leads to reduced transcription of several condensin subunits, including structural maintenance of chromosomes 2 (SMC2). Live and static microscopy revealed that inhibiting CDK7 signaling prolongs mitosis and induces chromatin bridge formation, DNA double-strand breaks, and abnormal nuclear features, all of which are indicative of mitotic catastrophe and chromosome instability. Affirming the importance of condensin regulation by CDK7, genetic suppression of the expression of SMC2, a core subunit of this complex, phenocopies CDK7 inhibition. Moreover, analysis of genome-wide chromatin conformation using Hi-C revealed that sustained activity of CDK7 is necessary to maintain chromatin sublooping, a function that is ascribed to condensin. Notably, the regulation of condensin subunit gene expression is independent of superenhancers. Together, these studies reveal a new role for CDK7 in sustaining chromatin configuration by ensuring the expression of condensin genes, including SMC2.


Assuntos
Cromatina , Quinases Ciclina-Dependentes , Transdução de Sinais , Cromatina/genética , Cromatina/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Mitose/genética , Instabilidade Cromossômica/genética , Humanos , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inativação Gênica
2.
Endocrinology ; 162(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606589

RESUMO

Chromosomal instability (CIN), or the dynamic change in chromosome number and composition, has been observed in cancer for decades. Recently, this phenomenon has been implicated as facilitating the acquisition of cancer hallmarks and enabling the formation of aggressive disease. Hence, CIN has the potential to serve as a therapeutic target for a wide range of cancers. CIN in cancer often occurs as a result of disrupting key regulators of mitotic fidelity and faithful chromosome segregation. As a consequence of their essential roles in mitosis, dysfunctional centrosomes can induce and maintain CIN. Centrosome defects are common in breast cancer, a heterogeneous disease characterized by high CIN. These defects include amplification, structural defects, and loss of primary cilium nucleation. Recent studies have begun to illuminate the ability of centrosome aberrations to instigate genomic flux in breast cancer cells and the tumor evolution associated with aggressive disease and poor patient outcomes. Here, we review the role of CIN in breast cancer, the processes by which centrosome defects contribute to CIN in this disease, and the emerging therapeutic approaches that are being developed to capitalize upon such aberrations.


Assuntos
Neoplasias da Mama/genética , Centrossomo/fisiologia , Instabilidade Cromossômica , Animais , Neoplasias da Mama/patologia , Centrossomo/metabolismo , Centrossomo/patologia , Instabilidade Cromossômica/genética , Feminino , Instabilidade Genômica/genética , Humanos
3.
Cancer Res ; 80(8): 1693-1706, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32054769

RESUMO

A significant therapeutic challenge for patients with cancer is resistance to chemotherapies such as taxanes. Overexpression of LIN9, a transcriptional regulator of cell-cycle progression, occurs in 65% of patients with triple-negative breast cancer (TNBC), a disease commonly treated with these drugs. Here, we report that LIN9 is further elevated with acquisition of taxane resistance. Inhibiting LIN9 genetically or by suppressing its expression with a global BET inhibitor restored taxane sensitivity by inducing mitotic progression errors and apoptosis. While sustained LIN9 is necessary to maintain taxane resistance, there are no inhibitors that directly repress its function. Hence, we sought to discover a druggable downstream transcriptional target of LIN9. Using a computational approach, we identified NIMA-related kinase 2 (NEK2), a regulator of centrosome separation that is also elevated in taxane-resistant cells. High expression of NEK2 was predictive of low survival rates in patients who had residual disease following treatment with taxanes plus an anthracycline, suggesting a role for this kinase in modulating taxane sensitivity. Like LIN9, genetic or pharmacologic blockade of NEK2 activity in the presence of paclitaxel synergistically induced mitotic abnormalities in nearly 100% of cells and completely restored sensitivity to paclitaxel, in vitro. In addition, suppressing NEK2 activity with two distinct small molecules potentiated taxane response in multiple in vivo models of TNBC, including a patient-derived xenograft, without inducing toxicity. These data demonstrate that the LIN9/NEK2 pathway is a therapeutically targetable mediator of taxane resistance that can be leveraged to improve response to this core chemotherapy. SIGNIFICANCE: Resistance to chemotherapy is a major hurdle for treating patients with cancer. Combining NEK2 inhibitors with taxanes may be a viable approach for improving patient outcomes by enhancing mitotic defects induced by taxanes alone.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Quinases Relacionadas a NIMA/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Paclitaxel/farmacologia , Taxoides/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Supressoras de Tumor/antagonistas & inibidores , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Senescência Celular , Centrossomo/enzimologia , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Xenoenxertos , Humanos , Mitose/genética , Quinases Relacionadas a NIMA/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Paclitaxel/administração & dosagem , Taxa de Sobrevida , Taxoides/administração & dosagem , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Ensaio Tumoral de Célula-Tronco , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
4.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 2): 156-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24637747

RESUMO

Polysaccharide deacetylases are bacterial enzymes that catalyze the deacetylation of acetylated sugars on the membranes of Gram-positive bacteria, allowing them to be unrecognized by host immune systems. Inhibition of these enzymes would disrupt such pathogenic defensive mechanisms and therefore offers a promising route for the development of novel antibiotic therapeutics. Here, the first X-ray crystal structure of BA0150, a putative polysaccharide deacetylase from Bacillus anthracis, is reported to 2.0 Å resolution. The overall structure maintains the conserved (α/ß)8 fold that is characteristic of this family of enzymes. The lack of a catalytic metal ion and a distinctive metal-binding site, however, suggest that this enzyme is not a functional polysaccharide deacetylase.


Assuntos
Amidoidrolases/química , Bacillus anthracis/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...