Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 807(Pt 3): 151079, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34687705

RESUMO

More than a century (1877-2011 CE) of asbestos mining activities in the Thetford Mines region have resulted in the accumulation of gigantic mineral waste piles on the banks of the Bécancour River (southern Quebec, Canada). This river widens downstream from the mining sites to form a chain of lakes, successively: Stater Pond, Trout Lake, Lake William and Lake Joseph. A previous paleolimnological investigation revealed that waste erosion and transport strongly modified and polluted Trout Lake. However, questions remain about the extent of the mining contamination within the Bécancour River Basin and its impacts at other spatial scales. Here, we aimed to address this lack of knowledge by analyzing the sedimentological evolution of Stater Pond and lakes William, Joseph and Bécancour (upstream reference site). Radiometric dating (210Pb, 137Cs, 14C) and analyses of geochemical composition (ICP-AES/ICP-MS), computed tomography, magnetic susceptibility, loss-on-ignition and grain size were performed on sediment cores retrieved at these sites. In contrast to Lake Bécancour, yet similar to Trout Lake, we found that Stater Pond and Lake William have received high mineral matter loads since the creation of the Lake Asbestos Mine during the 1950s. Recent lake sediments at these downstream sites were highly enriched in magnesium, chromium and nickel. Comparison of their geochemical signature with that of sedimentary source materials from within the drainage basin demonstrated that they predominantly originate from mining waste erosion. Because of this issue, Stater Pond and lakes Trout and William are nowadays exposed to very high sediment accumulation rates (up to 1.4 cm yr-1; 0.6 g cm-2 yr-1) and heavy metal enrichment. Evidence for contamination was also found in Lake Joseph, indicating that wastes are transported and deposited over ≥25 km downstream from the mining sites. Our study highlights the high risks and dangers associated with asbestos pollutants in aquatic ecosystems.


Assuntos
Amianto , Ecossistema , Lagos , Poluentes Químicos da Água , Mineração , Quebeque
2.
Sci Rep ; 11(1): 18504, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531423

RESUMO

High latitude freshwater ecosystems are sentinels of human activity and environmental change. The lakes and ponds that characterize Arctic landscapes have a low resilience to buffer variability in climate, especially with increasing global anthropogenic stressors in recent decades. Here, we show that a small freshwater pond in proximity of the archaeological site "Native Point" on Southampton Island (Nunavut, Arctic Canada) is a highly sensitive environmental recorder. The sediment analyses allowed for pinpointing the first arrival of Sadlermiut culture at Native Point to ~ 1250 CE, followed by a dietary shift likely in response to the onset of cooling in the region ~ 1400 CE. The influence of the Sadlermiut on the environment persisted long after the last of their population perished in 1903. Presently, the pond remains a distorted ecosystem that has experienced fundamental shifts in the benthic invertebrate assemblages and accumulated anthropogenic metals in the sediment. Our multi-proxy paleolimnological investigation using geochemical and biological indicators emphasizes that direct and indirect anthropogenic impacts have long-term environmental implications on high latitude ecosystems.

3.
Glob Chang Biol ; 26(4): 2270-2279, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31995661

RESUMO

Ecotones mark zones of rapid change in ecological structure at various spatial scales. They are believed to be particularly susceptible to shifts caused by environmental transformation, making them key regions for studying the effects of global change. Here, we explored the variation in assemblage structure of aquatic primary producer and consumer communities across latitudinal transects in northeastern North America (Québec-Labrador) to identify spatial patterns in biodiversity that indicated the location of transition zones across the landscape. We analyzed species richness and the cumulative rate of compositional change (expressed as beta-diversity) of diatoms and chironomids to detect any abrupt shifts in the rate of spatial taxonomic turnover. We used principal coordinates analysis to estimate community turnover with latitude, then applied piecewise linear regression to assess the position of ecotones. Statistically significant changes in assemblage composition occurred at 52 and 55°N, corresponding to the transition between closed- and open-crown forest, and to the southern onset of the forest tundra (i.e., the forest limit), respectively. The spatial distribution of ecotones was most strongly related to air temperature for chironomids and to vegetation- and soil-related chemical attributes of lake water for diatoms, including dissolved organic carbon content and water color. Lakes at mid- to high-latitudes currently face pressures from rapidly rising temperatures, accompanied by large increases in organic carbon inputs from their catchments, often leading to browning and its associated effects. The biota at the base of food webs in lakes located in transition zones are disproportionately affected by the cascading effects of these multi-factorial changes, concurrent with pronounced terrestrial greening observed in these regions. Similar patterns of biotic shifts have been observed along alpine aquatic transects, indicating the potential for widespread restructuring of cold, high-altitude and high-latitude freshwater communities due to global change.

4.
Ecol Evol ; 6(13): 4526-40, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27386094

RESUMO

The hydrology of shallow lakes (and ponds) located in the western Hudson Bay Lowlands (HBL) is sensitive to climate warming and associated permafrost thaw. However, their biological characteristics are poorly known, which hampers effective aquatic ecosystem monitoring. Located in northern Manitoba along the southwestern coast of Hudson Bay, Wapusk National Park (WNP) encompasses numerous shallow lakes representative of the subarctic zone. We analyzed the distribution and diversity of diatom (microscopic algae; class Bacillariophyceae) assemblages in surficial sediments of 33 lakes located in three different ecozones spanning a vegetation gradient, from NE to SW: the Coastal Fen (CF), the Interior Peat Plateau (IPP), and the Boreal Spruce Forest (BSF). We found significant differences (P < 0.05) in diatom community composition between CF and IPP lakes, and CF and BSF lakes, but not between IPP and BSF lakes. These results are consistent with water chemistry measurements, which indicated distinct limnological conditions for CF lakes. Diatom communities in CF lakes were generally dominated by alkaliphilous taxa typical of waters with medium to high conductivity, such as Nitzschia denticula. In contrast, several IPP and BSF lakes were dominated by acidophilous and circumneutral diatom taxa with preference for low conductivity (e.g., Tabellaria flocculosa, Eunotia mucophila, E. necompacta var. vixcompacta). This exploratory survey provides a first detailed inventory of the diatom assemblages in the WNP region needed for monitoring programs to detect changes in shallow lake ecosystems and ecozonal shifts in response to climate variations.

5.
Proc Natl Acad Sci U S A ; 108(47): 18899-904, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22025693

RESUMO

Ice shelves in the Arctic lost more than 90% of their total surface area during the 20th century and are continuing to disintegrate rapidly. The significance of these changes, however, is obscured by the poorly constrained ontogeny of Arctic ice shelves. Here we use the sedimentary record behind the largest remaining ice shelf in the Arctic, the Ward Hunt Ice Shelf (Ellesmere Island, Canada), to establish a long-term context in which to evaluate recent ice-shelf deterioration. Multiproxy analysis of sediment cores revealed pronounced biological and geochemical changes in Disraeli Fiord in response to the formation of the Ward Hunt Ice Shelf and its fluctuations through time. Our results show that the ice shelf was absent during the early Holocene and formed 4,000 years ago in response to climate cooling. Paleoecological data then indicate that the Ward Hunt Ice Shelf remained stable for almost three millennia before a major fracturing event that occurred ∼1,400 years ago. After reformation ∼800 years ago, freshwater was a constant feature of Disraeli Fiord until the catastrophic drainage of its epishelf lake in the early 21st century.


Assuntos
Mudança Climática/história , Sedimentos Geológicos/química , Camada de Gelo , Regiões Árticas , Carbono/análise , Cromatografia Líquida de Alta Pressão , Foraminíferos/citologia , Água Doce , Sedimentos Geológicos/microbiologia , História Antiga , História Medieval , Magnetismo , Nitrogênio/análise , Oceanografia/métodos , Pigmentos Biológicos/análise , Espectrometria por Raios X
6.
Environ Sci Technol ; 45(20): 8858-65, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21882858

RESUMO

Fourier transform infrared spectroscopy (FTIRS) can provide detailed information on organic and minerogenic constituents of sediment records. Based on a large number of sediment samples of varying age (0-340,000 yrs) and from very diverse lake settings in Antarctica, Argentina, Canada, Macedonia/Albania, Siberia, and Sweden, we have developed universally applicable calibration models for the quantitative determination of biogenic silica (BSi; n = 816), total inorganic carbon (TIC; n = 879), and total organic carbon (TOC; n = 3164) using FTIRS. These models are based on the differential absorbance of infrared radiation at specific wavelengths with varying concentrations of individual parameters, due to molecular vibrations associated with each parameter. The calibration models have low prediction errors and the predicted values are highly correlated with conventionally measured values (R = 0.94-0.99). Robustness tests indicate the accuracy of the newly developed FTIRS calibration models is similar to that of conventional geochemical analyses. Consequently FTIRS offers a useful and rapid alternative to conventional analyses for the quantitative determination of BSi, TIC, and TOC. The rapidity, cost-effectiveness, and small sample size required enables FTIRS determination of geochemical properties to be undertaken at higher resolutions than would otherwise be possible with the same resource allocation, thus providing crucial sedimentological information for climatic and environmental reconstructions.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lagos
7.
Environ Sci Technol ; 45(3): 964-70, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21210676

RESUMO

Mercury (Hg) profiles were compared to profiles of climate indicators including microfossil remains and algal-derived or S2 carbon (C) in dated sediment cores from 14 lakes spanning latitudinal and longitudinal gradients across the Canadian high and subarctic. Hg fluxes increased postindustrialization (post-∼1850) in 11 of these lakes (postindustrialization Hg fluxes (ΔHgF(F)) = 2-24 µg m(-2) y(-1)). Correction of HgF(F) for catchment contributions demonstrated that Hg deposition originating from catchment-independent factors, such as atmospheric deposition, increased since industrialization in all 14 lakes. Several of these lakes also showed postindustrial shifts in algal assemblages consistent with climate-induced changes. Eleven lakes showed post-1850s increases in S2F(F), suggesting that lake primary productivity has recently increased in the majority of our sites (ΔS2F(F) = 0.1-4 g m(-2) y(-1)). Other studies have interpreted significant relationships between Hg:S2 concentrations in Arctic sediment as support for the algal scavenging hypothesis, which postulates that Hg fluxes to Arctic sediments are largely driven by S2. However, in six of our lakes we observed no Hg:S2 relationship, and in one lake a significant negative Hg:S2 relationship was observed due to increased Hg and decreased S2 C deposition during the postindustrialization period. In six of the seven lakes where a significant positive Hg:S2 relationship was observed, algal assemblages either did not change through time or the timing of the shifts did not correspond to changes in Hg deposition. Our results demonstrate that, although Arctic lakes are experiencing a myriad of changes, including increased Hg and S2 deposition or changing algal assemblages, increased lake primary productivity does not appear to be driving changes in Hg fluxes to sediments.


Assuntos
Mudança Climática , Água Doce/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Poluentes Atmosféricos/análise , Regiões Árticas , Atmosfera/química , Canadá , Monitoramento Ambiental , Sedimentos Geológicos/química
8.
Proc Natl Acad Sci U S A ; 102(12): 4397-402, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15738395

RESUMO

Fifty-five paleolimnological records from lakes in the circumpolar Arctic reveal widespread species changes and ecological reorganizations in algae and invertebrate communities since approximately anno Domini 1850. The remoteness of these sites, coupled with the ecological characteristics of taxa involved, indicate that changes are primarily driven by climate warming through lengthening of the summer growing season and related limnological changes. The widespread distribution and similar character of these changes indicate that the opportunity to study arctic ecosystems unaffected by human influences may have disappeared.


Assuntos
Clima Frio , Ecossistema , Efeito Estufa , Animais , Regiões Árticas , Biodiversidade , Eucariotos/isolamento & purificação , Água Doce , Invertebrados , Fatores de Tempo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...