Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zookeys ; 1198: 55-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693970

RESUMO

Features of shell and genitalia as well as nucleotide sequences of selected mitochondrial and nuclear genes of specimens of Monachacantiana from ten northern French and two Dutch populations were compared with the same features of British and Italian populations. They were found to be very similar to populations previously identified as belonging to the CAN-1 lineage of M.cantiana. This confirms previous suggestions that M.cantiana was introduced to western Europe (England, France and the Netherlands) in historical times.

2.
Zookeys ; 1130: 65-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761020

RESUMO

The mitochondrial genome of Monachacartusiana is the first complete mitochondrial sequence described for the pulmonate snail genus Monacha and for the family Hygromiidae. The identified mitogenome has a length of 13,894 bp and encodes 13 proteins, 22 tRNAs, and two rRNAs. A phylogenetic analysis of available mitogenomes from representatives of helicoid families shows a sister group relationship of Hygromiidae and Geomitridae, which have been recently recognised as separate families.

3.
Zookeys ; 988: 17-61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223890

RESUMO

Specimens obtained from ten populations of a Monacha species from the central Apennines were compared with six molecular lineages of Monacha cantiana s. l. (CAN-1, CAN-2, CAN-3, CAN-4, CAN-5, CAN-6) and two other Monacha species (M. cartusiana and M. parumcincta), treated as outgroup, by molecular (nucleotide sequences of two mitochondrial COI and 16S rDNA as well as two nuclear ITS2 and H3 gene fragments) and morphological (shell and genital anatomy) analysis. The results strongly suggest that these populations represent a separate species for which two names are available: the older Helix pantanellii De Stefani, 1879 and the junior M. ruffoi Giusti, 1973. The nucleotide sequences created well separated clades on each phylogenetic tree. Genital anatomy included several distinctive features concerning vaginal appendix, penis, penial papilla and flagellum; instead, shell characters only enabled them to be distinguished from M. cartusiana and M. parumcincta. Remarkably, populations of M. pantanellii show high morphological variability. Shell variability mainly concerns size, some populations having very small dimensions. Genital variability shows a more intricate pattern of all anatomical parts, being higher as regards the vagina and vaginal appendix. Despite this morphological variability, the K2P distance range of COI sequences between populations is narrow (0.2-4.5%), if we consider all but three of the 53 sequences obtained. This research confirmed that the species of Monacha and their molecularly distinguished lineages can only occasionally be recognised morphologically and that they have significant inter- and intra-population variability. The possibility of using an overall approach, including shell, genital and molecular evidence, was taken in order to establish a reliable taxonomic setting.

4.
Zookeys ; (814): 115-149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30655712

RESUMO

Two new lineages CAN-5 and CAN-6 were recognised in four populations of Monachacantiana (Montagu, 1803) s.l. from the Italian Apuan Alps by joint molecular and morphological analysis. They are different from other M.cantiana lineages known from English, Italian, Austrian and French populations, i.e. CAN-1, CAN-2, CAN-3 and CAN-4, as well as from the other Italian Monacha species used for comparisons (M.parumcincta and M.cartusiana). Although a definite taxonomic and nomenclatural setting seems to be premature, we suggest that the name or names for these new lineages as one or two species should be found among 19th century names (Helixsobara Mabille, 1881, H.ardesa Mabille, 1881, H.apuanica Mabille, 1881, H.carfaniensis De Stefani, 1883 and H.spallanzanii De Stefani, 1884).

5.
Zookeys ; (765): 1-41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29904267

RESUMO

Molecular analysis of nucleotide sequences of mitochondrial cytochrome oxidase subunit 1 (COI) and 16S ribosomal DNA (16SrDNA) as well as nuclear histone 3 (H3) and internal transcribed spacer 2 of rDNA (ITS2) gene fragments together with morphological analysis of shell and genitalia features showed that English, French and Italian populations usually assigned to Monacha cantiana consist of four distinct lineages (CAN-1, CAN-2, CAN-3, CAN-4). One of these lineages (CAN-1) included most of the UK (five sites) and Italian (five sites) populations examined. Three other lineages represented populations from two sites in northern Italy (CAN-2), three sites in northern Italy and Austria (CAN-3), and two sites in south-eastern France (CAN-4). The taxonomic and nomenclatural setting is only currently available for lineages CAN-1 and CAN-4; a definitive frame for the other two requires much more research. The lineage CAN-1 corresponds to the true M. cantiana (Montagu, 1803) because it is the only one that includes topotypical English populations. The relationships and genetic distances support the hypothesis of the Italian origin of this lineage which was probably introduced to England by the Romans. The lineage CAN-4 is attributed to M. cemenelea (Risso, 1826), for which a neotype has been designated and deposited. Its diagnostic sequences of COI, 16SrDNA, H3 and ITS2 genes have also been deposited in GenBank. Molecular and morphological (shell and genitalia) features showed that M. parumcincta (Rossmässler, 1834) is a distinct taxon from the M. cantiana lineages.

6.
Eur J Cell Biol ; 95(12): 543-551, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27662803

RESUMO

Water channel proteins, classified as a family of Membrane Intrinsic Proteins (MIPs) superfamily, enable rapid movement of water and small uncharged molecules through biological membranes. Although water channel proteins are required in several important processes characteristic for the animals, such as osmoregulation, mucus secretion, or defense against desiccation, molluscs, until now, have been very poorly explored in this aspect. Therefore, we decided to study MIPs in Helix pomatia L. applied as a model in studies on terrestrial snail physiology. Our studies consisted in: the snail organ transcriptome sequencing and consecutive bioinformatic analysis of the predicted protein, estimation of the encoding transcript expression (qPCR), investigation of the predicted protein function in the yeast Saccharomyces cerevisiae cells, and the phylogenetic analysis. We identified six water channel proteins, named HpAQP1 to HpAQP6. All of them were proven to transport water, two of them (HpAQP3 and HpAQP4) were also shown to be able to transport glycerol, and other two (HpAQP5 and HpAQP6) to transport H2O2. Phylogenetic analysis indicated that the proteins either fell into aquaporins (HpAQP1, HpAQP2 and HpAQP5) or formed new groups of invertebrate water channel proteins, not described until now, that we suggest to term malacoglyceroporins (HpAQP3 and HpAQP4) and malacoaquaporins (HpAQP6). Thus, the classification of animal water channels based on the vertebrate proteins and including aquaporin, aquaglyceroporin, S-aquaporin and AQP8-type grades does not reflect diversity of these proteins in invertebrates. The obtained results provide important data concerning diversity of water channel protein repertoire in aquatic and terrestrial invertebrates and should also contribute to the improvement of animal water channel classification system.


Assuntos
Aquaporinas , Caracois Helix , Osmorregulação/fisiologia , Filogenia , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Caracois Helix/genética , Caracois Helix/metabolismo
7.
PLoS One ; 9(4): e93313, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714665

RESUMO

SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a ß-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed.


Assuntos
Hordeum/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Difração de Raios X
8.
J Membr Biol ; 247(3): 239-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24445747

RESUMO

Aquaporins (AQPs), also known as water channel proteins, are members of a large protein family termed Major Intrinsic Proteins (MIP). The mammalian AQPs have been most comprehensively described, while knowledge about AQPs in invertebrates is limited mainly to insects. Not a single AQP protein has been described in snails to date. Consequently, we decided to search for the proteins in gastropod representatives, namely Lymnaea stagnalis, Catascopia occulta, and Stagnicola palustris (Mollusca; Gastropoda; Pulmonata; Lymnaeidae). Using the molecular approach, we identified L. stagnalis, C. occulta, and S. palustris open reading frames (ORFs) showing homology to AQP genes available in GenBank database, and characterized the encoded proteins, referred to as LsAQP1, CoAQP1, and SpAQP1, respectively. The putative snail aquaporins contain 299 amino acids, have a molecular mass of about 32 kDa, display the general AQP topology and three-dimensional structure congruent with orthodox AQPs, i.e., water-specific ones. Due to high levels of similarity in their characteristics, LsAQP1 was chosen for further studies, as the obtained results were supposed to be applicable for CoAQP1 and SpAQP1. Expression analysis revealed the presence of LsAQP1 transcript in the digestive tract, the cerebral ganglia, the kidney, the reproductive system, and the foot, suggesting that LsAQP1 as well as CoAQP1 and SpAQP1 are ubiquitous proteins and may play important roles in many essential water transport processes. The role appears to be confirmed by results of the yeast growth complementation assay pointing at functionality of LsAQP1. Thus, the obtained results support the AQP expression in gastropod tissues for the first time.


Assuntos
Aquaporinas/genética , Caramujos/genética , Sequência de Aminoácidos , Animais , Aquaporinas/química , Sequência de Bases , Regulação da Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Especificidade de Órgãos/genética , Filogenia , Conformação Proteica , Alinhamento de Sequência , Caramujos/classificação
9.
Plant Cell Physiol ; 54(7): 1064-78, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620482

RESUMO

Plant S1-like nucleases, often referred to as nuclease I enzymes, are the main class of enzymes involved in nucleic acid degradation during plant programmed cell death. The catalytically active site of these enzymes shows a significant similarity to the well-described P1 nuclease from Penicillium citrinum. Previously published studies reported that plant S1-like nucleases possess catalytic activities similar to their fungal orthologs, i.e. they hydrolyze single-stranded DNA and RNA, and less efficiently double-stranded DNA, in the presence of zinc ions. Here we describe a comprehensive study of the nucleolytic activities of all Arabidopsis S1-like paralogs. Our results revealed that different members of this family are characterized by a surprisingly large variety of catalytic properties. We found that, in addition to Zn(2+)-dependent enzymes, this family also comprises nucleases activated by Ca(2+) and Mn(2+), which implies that the apparently well-known S1 nuclease active site in plant nucleases is able to cooperate with different activatory ions. Moreover, particular members of this class differ in their optimum pH value and substrate specificity. These results shed new light on the widely accepted classification of plant nucleases which is based on the assumption that the catalytic requirements of plant nucleases reflect their phylogenetic origin. Our results imply the need to redefine the understanding of the term 'nuclease I'. Analysis of the phylogenetic relationships between S1-like enzymes shows that plant representatives of this family evolve toward an increase in catalytic diversity. The importance of this process for the biological functions of plant S1-type enzymes is discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Endonucleases/genética , Evolução Molecular , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Biocatálise/efeitos dos fármacos , Western Blotting , Cálcio/farmacologia , Domínio Catalítico , DNA de Cadeia Simples/metabolismo , Endonucleases/química , Endonucleases/classificação , Endonucleases/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Manganês/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , RNA/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Zinco/farmacologia
10.
Genome Biol Evol ; 4(2): 110-25, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22155732

RESUMO

Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have ß-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial ß-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane ß-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta.


Assuntos
Acanthamoeba/metabolismo , Proteínas de Membrana/genética , Membranas Mitocondriais/metabolismo , Filogenia , Proteínas de Protozoários/genética , Canais de Ânion Dependentes de Voltagem/genética , Acanthamoeba/genética , Sequência de Aminoácidos , Dictyostelium/metabolismo , Evolução Molecular , Marcadores Genéticos , Funções Verossimilhança , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...