Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645893

RESUMO

Tumors may contain billions of cells including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that is consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.

2.
Clin Cancer Res ; 28(13): 2898-2910, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511927

RESUMO

PURPOSE: The immunosuppressive tumor microenvironment present in the majority of diffuse glioma limits therapeutic response to immunotherapy. As the determinants of the glioma-associated immune response are relatively poorly understood, the study of glioma with more robust tumor-associated immune responses may be particularly useful to identify novel immunomodulatory factors that can promote T-cell effector function in glioma. EXPERIMENTAL DESIGN: We used multiplex immune-profiling, proteomic profiling, and gene expression analysis to define the tumor-associated immune response in two molecular subtypes of glioma and identify factors that may modulate this response. We then used patient-derived glioma cultures and an immunocompetent murine model for malignant glioma to analyze the ability of tumor-intrinsic factors to promote a CD8+ T-cell response. RESULTS: As compared with isocitrate dehydrogenase (IDH)-mutant astrocytoma, MAPK-activated pleomorphic xanthoastrocytoma (PXA) harbored increased numbers of activated cytotoxic CD8+ T cells and Iba1+ microglia/macrophages, increased MHC class I expression, enrichment of genes associated with antigen presentation and processing, and increased tumor cell secretion of the chemokine CXCL14. CXCL14 promoted activated CD8+ T-cell chemotaxis in vitro, recruited tumor-infiltrating CD8+ T cells in vivo, and prolonged overall survival in a cytotoxic T-cell-dependent manner. The immunomodulatory molecule B7-H3 was also highly expressed in PXA. CONCLUSIONS: We identify the MAPK-activated lower grade astrocytoma PXA as having an immune-rich tumor microenvironment and suggest this tumor may be particularly vulnerable to immunotherapeutic modulation. We also identify CXCL14 as an important determinant of the glioma-associated immune microenvironment, sufficient to promote an antitumor CD8+ T-cell response.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Quimiocinas CXC , Glioma , Animais , Neoplasias Encefálicas/patologia , Quimiocinas CXC/metabolismo , Glioma/patologia , Humanos , Imunidade , Camundongos , Proteômica , Microambiente Tumoral
3.
Neuro Oncol ; 24(7): 1101-1112, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091751

RESUMO

BACKGROUND: The alternative lengthening of telomeres (ALT) pathway is essential for tumor proliferation in astrocytomas. The goal of this study was to identify metabolic alterations linked to the ALT pathway that can be exploited for noninvasive magnetic resonance spectroscopy (MRS)-based imaging of astrocytomas in vivo. METHODS: Genetic and pharmacological methods were used to dissect the association between the ALT pathway and glucose metabolism in genetically engineered and patient-derived astrocytoma models. 2H-MRS was used for noninvasive imaging of ALT-linked modulation of glycolytic flux in mice bearing orthotopic astrocytomas in vivo. RESULTS: The ALT pathway was associated with higher activity of the rate-limiting glycolytic enzyme phosphofructokinase-1 and concomitantly elevated flux of glucose to lactate in astrocytoma cells. Silencing the ALT pathway or treating with the poly(ADP-ribose) polymerase inhibitor niraparib that induces telomeric fusion in ALT-dependent astrocytoma cells abrogated glycolytic flux. Importantly, this metabolic reprogramming could be non-invasively visualized by 2H-MRS. Lactate production from [6,6'-2H]-glucose was higher in ALT-dependent astrocytoma tumors relative to the normal brain in vivo. Furthermore, treatment of orthotopic astrocytoma-bearing mice with niraparib reduced lactate production from [6,6'-2H]-glucose at early timepoints when alterations in tumor volume could not be detected by anatomical imaging, pointing to the ability of [6,6'-2H]-glucose to report on pseudoprogression in vivo. CONCLUSIONS: We have mechanistically linked the ALT pathway to elevated glycolytic flux and demonstrated the ability of [6,6'-2H]-glucose to non-invasively assess tumor burden and response to therapy in astrocytomas. Our findings point to a novel, clinically translatable method for metabolic imaging of astrocytoma patients.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Animais , Astrocitoma/diagnóstico por imagem , Astrocitoma/tratamento farmacológico , Astrocitoma/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Deutério , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/genética , Glucose , Lactatos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Carga Tumoral
4.
Front Oncol ; 11: 772233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34881184

RESUMO

TRF2 is part of the shelterin complex that hides telomeric DNA ends and prevents the activation of the cNHEJ pathway that can lead to chromosomal fusion. TRF2, however, also actively suppresses the cNHEJ pathway by recruiting two proteins, MRE11 and UBR5. MRE11 binds BRCC3, which in turn deubiquitinates γH2AX deposited at exposed telomeric DNA ends and limits RNF168 recruitment to the telomere. UBR5, in contrast directly ubiquitinates and destroys RNF168. The loss of telomeric RNF168 in turn blocks the subsequent recruitment of 53BP1 and prevents the cNHEJ-mediated fusion of chromosomes with exposed telomeric DNA ends. Although MRE11 and UBR5 are both involved in the control of telomeric RNF168 levels and the chromosome fusion process, their relative contributions have not been directly addressed. To do so we genetically suppressed MRE11 and UBR5 alone or in combination in glioma cell lines which we previously showed contained dysfunctional telomeres that were dependent on TRF2 for suppression of telomeric fusion and monitored the effects on events associated with telomere fusion. We here show that while suppression of either MRE11 or UBR5 alone had minimal effects on RNF168 telomeric accumulation, 53BP1 recruitment, and telomeric fusion, their combined suppression led to significant increases in RNF168 and 53BP1 telomeric recruitment and telomeric fusion and eventually cell death, all of which were reversible by suppression of RNF168 itself. These results show that MRE11 and UBR5 co-operate to suppress fusion at dysfunctional telomeres.

5.
Sci Transl Med ; 13(592)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952676

RESUMO

About 10% of all tumors, including most lower-grade astrocytoma, rely on the alternative lengthening of telomere (ALT) mechanism to resolve telomeric shortening and avoid limitations on their growth. Here, we found that dependence on the ALT mechanism made cells hypersensitive to a subset of poly(ADP-ribose) polymerase inhibitors (PARPi). We found that this hypersensitivity was not associated with PARPi-created genomic DNA damage as in most PARPi-sensitive populations but rather with PARPi-induced telomere fusion. Mechanistically, we determined that PARP1 was recruited to the telomeres of ALT-dependent cells as part of a DNA damage response. By recruiting MRE11 and BRCC3 to stabilize TRF2 at the ends of telomeres, PARP1 blocked chromosomal fusion. Exposure of ALT-dependent tumor cells to a subset of PARPi induced a conformational change in PARP1 that limited binding to MRE11 and BRCC3 and delayed release of the TRF2-mediated block on lethal telomeric fusion. These results therefore provide a basis for PARPi treatment of ALT-dependent tumors, as well as establish chromosome fusion as a biomarker of their activity.


Assuntos
Neoplasias , Telômero , DNA , Dano ao DNA , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Telômero/genética
6.
Neuro Oncol ; 23(9): 1509-1522, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33864084

RESUMO

BACKGROUND: Telomerase reverse transcriptase (TERT) is essential for tumor proliferation, including in low-grade oligodendrogliomas (LGOGs). Since TERT is silenced in normal cells, it is also a therapeutic target. Therefore, noninvasive methods of imaging TERT are needed. Here, we examined the link between TERT expression and metabolism in LGOGs, with the goal of leveraging this information for noninvasive magnetic resonance spectroscopy (MRS)-based metabolic imaging of LGOGs. METHODS: Immortalized normal human astrocytes with doxycycline-inducible TERT silencing, patient-derived LGOG cells, orthotopic tumors, and LGOG patient biopsies were studied to determine the mechanistic link between TERT expression and glucose metabolism. The ability of hyperpolarized [U-13C, U-2H]-glucose to noninvasively assess TERT expression was tested in live cells and orthotopic tumors. RESULTS: TERT expression was associated with elevated glucose flux through the pentose phosphate pathway (PPP), elevated NADPH, which is a major product of the PPP, and elevated glutathione, which is maintained in a reduced state by NADPH. Importantly, hyperpolarized [U-13C, U-2H]-glucose metabolism via the PPP noninvasively reported on TERT expression and response to TERT inhibition in patient-derived LGOG cells and orthotopic tumors. Mechanistically, TERT acted via the sirtuin SIRT2 to upregulate the glucose transporter GLUT1 and the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase. CONCLUSIONS: We have, for the first time, leveraged a mechanistic understanding of TERT-associated metabolic reprogramming for noninvasive imaging of LGOGs using hyperpolarized [U-13C, U-2H]-glucose. Our findings provide a novel way of imaging a hallmark of tumor immortality and have the potential to improve diagnosis and treatment response assessment for LGOG patients.


Assuntos
Oligodendroglioma , Telomerase , Glucose , Humanos , Espectroscopia de Ressonância Magnética , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/genética , Via de Pentose Fosfato , Telomerase/genética , Telomerase/metabolismo
7.
Metabolites ; 11(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668509

RESUMO

Approximately 80% of low-grade glioma (LGGs) harbor mutant isocitrate dehydrogenase 1/2 (IDH1/2) driver mutations leading to accumulation of the oncometabolite 2-hydroxyglutarate (2-HG). Thus, inhibition of mutant IDH is considered a potential therapeutic target. Several mutant IDH inhibitors are currently in clinical trials, including AG-881 and BAY-1436032. However, to date, early detection of response remains a challenge. In this study we used high resolution 1H magnetic resonance spectroscopy (1H-MRS) to identify early noninvasive MR (Magnetic Resonance)-detectable metabolic biomarkers of response to mutant IDH inhibition. In vivo 1H-MRS was performed on mice orthotopically-implanted with either genetically engineered (U87IDHmut) or patient-derived (BT257 and SF10417) mutant IDH1 cells. Treatment with either AG-881 or BAY-1436032 induced a significant reduction in 2-HG. Moreover, both inhibitors led to a significant early and sustained increase in glutamate and the sum of glutamate and glutamine (GLX) in all three models. A transient early increase in N-acetylaspartate (NAA) was also observed. Importantly, all models demonstrated enhanced animal survival following both treatments and the metabolic alterations were observed prior to any detectable differences in tumor volume between control and treated tumors. Our study therefore identifies potential translatable early metabolic biomarkers of drug delivery, mutant IDH inhibition and glioma response to treatment with emerging clinically relevant therapies.

8.
Nat Commun ; 12(1): 92, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397920

RESUMO

Telomere maintenance is a universal hallmark of cancer. Most tumors including low-grade oligodendrogliomas use telomerase reverse transcriptase (TERT) expression for telomere maintenance while astrocytomas use the alternative lengthening of telomeres (ALT) pathway. Although TERT and ALT are hallmarks of tumor proliferation and attractive therapeutic targets, translational methods of imaging TERT and ALT are lacking. Here we show that TERT and ALT are associated with unique 1H-magnetic resonance spectroscopy (MRS)-detectable metabolic signatures in genetically-engineered and patient-derived glioma models and patient biopsies. Importantly, we have leveraged this information to mechanistically validate hyperpolarized [1-13C]-alanine flux to pyruvate as an imaging biomarker of ALT status and hyperpolarized [1-13C]-alanine flux to lactate as an imaging biomarker of TERT status in low-grade gliomas. Collectively, we have identified metabolic biomarkers of TERT and ALT status that provide a way of integrating critical oncogenic information into non-invasive imaging modalities that can improve tumor diagnosis and treatment response monitoring.


Assuntos
Neoplasias Encefálicas/genética , Homeostase do Telômero , Telômero/metabolismo , Alanina/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Isótopos de Carbono/metabolismo , Linhagem Celular Tumoral , Engenharia Genética , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Ácido Láctico/metabolismo , Masculino , Metaboloma , Modelos Biológicos , Gradação de Tumores , Proteínas de Neoplasias/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Nus , Telomerase/genética , Telomerase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Res ; 80(22): 5098-5108, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32958546

RESUMO

Although lower grade gliomas are driven by mutations in the isocitrate dehydrogenase 1 (IDH1) gene and are less aggressive than primary glioblastoma, they nonetheless generally recur. IDH1-mutant patients are increasingly being treated with temozolomide, but early detection of response remains a challenge and there is a need for complementary imaging methods to assess response to therapy prior to tumor shrinkage. The goal of this study was to determine the value of magnetic resonance spectroscopy (MRS)-based metabolic changes for detection of response to temozolomide in both genetically engineered and patient-derived mutant IDH1 models. Using 1H MRS in combination with chemometrics identified several metabolic alterations in temozolomide-treated cells, including a significant increase in steady-state glutamate levels. This was confirmed in vivo, where the observed 1H MRS increase in glutamate/glutamine occurred prior to tumor shrinkage. Cells labeled with [1-13C]glucose and [3-13C]glutamine, the principal sources of cellular glutamate, showed that flux to glutamate both from glucose via the tricarboxylic acid cycle and from glutamine were increased following temozolomide treatment. In line with these results, hyperpolarized [5-13C]glutamate produced from [2-13C]pyruvate and hyperpolarized [1-13C]glutamate produced from [1-13C]α-ketoglutarate were significantly higher in temozolomide-treated cells compared with controls. Collectively, our findings identify 1H MRS-detectable elevation of glutamate and hyperpolarized 13C MRS-detectable glutamate production from either pyruvate or α-ketoglutarate as potential translatable metabolic biomarkers of response to temozolomide treatment in mutant IDH1 glioma. SIGNIFICANCE: These findings show that glutamate can be used as a noninvasive, imageable metabolic marker for early assessment of tumor response to temozolomide, with the potential to improve treatment strategies for mutant IDH1 patients.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Ácido Glutâmico/metabolismo , Isocitrato Desidrogenase/genética , Temozolomida/uso terapêutico , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Isótopos de Carbono , Feminino , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Camundongos Nus , Mutação , Engenharia de Proteínas , Ácido Pirúvico/metabolismo , Distribuição Aleatória , Resultado do Tratamento
10.
Neurooncol Adv ; 2(1): vdaa088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904945

RESUMO

BACKGROUND: IDH-mutant lower-grade gliomas (LGGs) evolve under the selective pressure of therapy, but well-characterized patient-derived cells (PDCs) modeling evolutionary stages are lacking. IDH-mutant LGGs may develop therapeutic resistance associated with chemotherapy-driven hypermutation and malignant progression. The aim of this study was to establish and characterize PDCs, single-cell-derived PDCs (scPDCs), and xenografts (PDX) of IDH1-mutant recurrences representing distinct stages of tumor evolution. METHODS: We derived and validated cell cultures from IDH1-mutant recurrences of astrocytoma and oligodendroglioma. We used exome sequencing and phylogenetic reconstruction to examine the evolutionary stage represented by PDCs, scPDCs, and PDX relative to corresponding spatiotemporal tumor tissue and germline DNA. PDCs were also characterized for growth and tumor immortality phenotypes, and PDX were examined histologically. RESULTS: The integrated astrocytoma phylogeny revealed 2 independent founder clonal expansions of hypermutated (HM) cells in tumor tissue that are faithfully represented by independent PDCs. The oligodendroglioma phylogeny showed more than 4000 temozolomide-associated mutations shared among tumor samples, PDCs, scPDCs, and PDX, suggesting a shared monoclonal origin. The PDCs from both subtypes exhibited hallmarks of tumorigenesis, retention of subtype-defining genomic features, production of 2-hydroxyglutarate, and subtype-specific telomere maintenance mechanisms that confer tumor cell immortality. The oligodendroglioma PDCs formed infiltrative intracranial tumors with characteristic histology. CONCLUSIONS: These PDCs, scPDCs, and PDX are unique and versatile community resources that model the heterogeneous clonal origins and functions of recurrent IDH1-mutant LGGs. The integrated phylogenies advance our knowledge of the complex evolution and immense mutational load of IDH1-mutant HM glioma.

11.
Theranostics ; 10(19): 8757-8770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754276

RESUMO

Mutations in isocitrate dehydrogenase 1 (IDH1mut) are reported in 70-90% of low-grade gliomas and secondary glioblastomas. IDH1mut catalyzes the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), an oncometabolite which drives tumorigenesis. Inhibition of IDH1mut is therefore an emerging therapeutic approach, and inhibitors such as AG-120 and AG-881 have shown promising results in phase 1 and 2 clinical studies. However, detection of response to these therapies prior to changes in tumor growth can be challenging. The goal of this study was to identify non-invasive clinically translatable metabolic imaging biomarkers of IDH1mut inhibition that can serve to assess response. Methods: IDH1mut inhibition was confirmed using an enzyme assay and 1H- and 13C- magnetic resonance spectroscopy (MRS) were used to investigate the metabolic effects of AG-120 and AG-881 on two genetically engineered IDH1mut-expressing cell lines, NHAIDH1mut and U87IDH1mut. Results:1H-MRS indicated a significant decrease in steady-state 2-HG following treatment, as expected. This was accompanied by a significant 1H-MRS-detectable increase in glutamate. However, other metabolites previously linked to 2-HG were not altered. 13C-MRS also showed that the steady-state changes in glutamate were associated with a modulation in the flux of glutamine to both glutamate and 2-HG. Finally, hyperpolarized 13C-MRS was used to show that the flux of α-KG to both glutamate and 2-HG was modulated by treatment. Conclusion: In this study, we identified potential 1H- and 13C-MRS-detectable biomarkers of response to IDH1mut inhibition in gliomas. Although further studies are needed to evaluate the utility of these biomarkers in vivo, we expect that in addition to a 1H-MRS-detectable drop in 2-HG, a 1H-MRS-detectable increase in glutamate, as well as a hyperpolarized 13C-MRS-detectable change in [1-13C] α-KG flux, could serve as metabolic imaging biomarkers of response to treatment.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Diaminas/farmacologia , Glioma/tratamento farmacológico , Glioma/genética , Ácido Glutâmico/metabolismo , Glutaratos/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Mutação , Espectroscopia de Prótons por Ressonância Magnética , Piridinas/farmacologia
12.
Cell Rep ; 31(2): 107518, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294440

RESUMO

The metabolic enzyme phosphoglycerate mutase 1 (PGAM1) is overexpressed in several types of cancer, suggesting an additional function beyond its established role in the glycolytic pathway. We here report that PGAM1 is overexpressed in gliomas where it increases the efficiency of the DNA damage response (DDR) pathway by cytoplasmic binding of WIP1 phosphatase, thereby preventing WIP1 nuclear translocation and subsequent dephosphorylation of the ATM signaling pathway. Silencing of PGAM1 expression in glioma cells consequently decreases formation of γ-H2AX foci, increases apoptosis, and decreases clonogenicity following irradiation (IR) and temozolomide (TMZ) treatment. Furthermore, mice intracranially implanted with PGAM1-knockdown cells have significantly improved survival after treatment with IR and TMZ. These effects are counteracted by exogenous expression of two kinase-dead PGAM1 mutants, H186R and Y92F, indicating an important non-enzymatic function of PGAM1. Our findings identify PGAM1 as a potential therapeutic target in gliomas.


Assuntos
Reparo do DNA/fisiologia , Fosfoglicerato Mutase/metabolismo , Proteína Fosfatase 2C/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Feminino , Humanos , Masculino , Camundongos , Fosfoglicerato Mutase/genética , Proteína Fosfatase 2C/genética
13.
Neurosurgery ; 87(2): 408-417, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31833548

RESUMO

BACKGROUND: The extent of resection has been reported to be associated with overall survival in gliomas. The use of 5-aminolevulinic acid (5-ALA) has been recognized to increase the extent of tumor resection. OBJECTIVE: To evaluate what factors affect the intraoperative fluorescence after administration of 5-ALA in gliomas. METHODS: Correlation of intraoperative fluorescence and several clinical, radiographic, molecular biologic, and histopathologic characters was retrospectively evaluated in 104 patients (53 males and 51 females; mean age 54.2 yr) with gliomas at our institution. To clarify the mechanisms that mutant isocitrate dehydrogenase (IDH) affect the intraoperative fluorescence, in Vitro experiments using genetically engineered glioma cells harboring mutant IDH1 were performed. RESULTS: Intraoperative fluorescence was observed in 82 patients (78.8%). In addition to age, magnetic resonance imaging enhancement, World Health Organization grades, and MIB-1 index, the status of IDH was revealed to be correlated with intraoperative fluorescence. In Vitro assay revealed that mutant IDH indirectly reduced the amount of exogenous 5-ALA-derived protoporphyrinogen IX in glioma cells by increasing activity of ferrochelatase and heme oxygenase 1. CONCLUSION: Mutant IDH1/2-induced metabolite changes of exogenous 5-ALA were suggested to contribute to the lesser intraoperative fluorescence in gliomas with mutant IDH1/2 than in those without.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Imagem Óptica/métodos , Adulto , Idoso , Ácido Aminolevulínico , Neoplasias Encefálicas/genética , Feminino , Glioma/genética , Humanos , Período Intraoperatório , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Protoporfirinas , Estudos Retrospectivos
14.
Sci Rep ; 9(1): 10521, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324855

RESUMO

70-90% of low-grade gliomas and secondary glioblastomas are characterized by mutations in isocitrate dehydrogenase 1 (IDHmut). IDHmut produces the oncometabolite 2-hydroxyglutarate (2HG), which drives tumorigenesis in these tumors. The phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway represents an attractive therapeutic target for IDHmut gliomas, but noninvasive indicators of drug target modulation are lacking. The goal of this study was therefore to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers associated with IDHmut glioma response to the dual PI3K/(mTOR) inhibitor XL765. 1H-MRS of two cell lines genetically modified to express IDHmut showed that XL765 induced a significant reduction in several intracellular metabolites including 2HG. Importantly, examination of an orthotopic IDHmut tumor model showed that enhanced animal survival following XL765 treatment was associated with a significant in vivo 1H-MRS detectable reduction in 2HG but not with significant inhibition in tumor growth. Further validation is required, but our results indicate that 2HG could serve as a potential noninvasive MRS-detectable metabolic biomarker of IDHmut glioma response to PI3K/mTOR inhibition.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Astrócitos/metabolismo , Neoplasias Encefálicas/mortalidade , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Transformada , Glioma/mortalidade , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Estimativa de Kaplan-Meier , Camundongos , Proteínas de Neoplasias/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Processamento de Proteína Pós-Traducional , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Discov ; 9(6): 756-777, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30862724

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is important for reductive carboxylation in cancer cells, and the IDH1 R132H mutation plays a pathogenic role in cancers including acute myeloid leukemia (AML). However, the regulatory mechanisms modulating mutant and/or wild-type (WT) IDH1 function remain unknown. Here, we show that two groups of tyrosine kinases (TK) enhance the activation of mutant and WT IDH1 through preferential Y42 or Y391 phosphorylation. Mechanistically, Y42 phosphorylation occurs in IDH1 monomers, which promotes dimer formation with enhanced substrate (isocitrate or α-ketoglutarate) binding, whereas Y42-phosphorylated dimers show attenuated disruption to monomers. Y391 phosphorylation occurs in both monomeric and dimeric IDH1, which enhances cofactor (NADP+ or NADPH) binding. Diverse oncogenic TKs phosphorylate IDH1 WT at Y42 and activate Src to phosphorylate IDH1 at Y391, which contributes to reductive carboxylation and tumor growth, whereas FLT3 or the FLT3-ITD mutation activates JAK2 to enhance mutant IDH1 activity through phosphorylation of Y391 and Y42, respectively, in AML cells. SIGNIFICANCE: We demonstrated an intrinsic connection between oncogenic TKs and activation of WT and mutant IDH1, which involves distinct TK cascades in related cancers. In particular, these results provide an additional rationale supporting the combination of FLT3 and mutant IDH1 inhibitors as a promising clinical treatment of mutant IDH1-positive AML.See related commentary by Horton and Huntly, p. 699.This article is highlighted in the In This Issue feature, p. 681.


Assuntos
Isocitrato Desidrogenase/genética , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Linhagem Celular Tumoral , Gerenciamento Clínico , Humanos , Isocitrato Desidrogenase/química , Janus Quinase 2/metabolismo , Modelos Biológicos , NADP/metabolismo , Neoplasias/patologia , Fosforilação , Ligação Proteica , Multimerização Proteica , Tirosina Quinase 3 Semelhante a fms/genética
16.
NMR Biomed ; 32(2): e4044, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30561869

RESUMO

Vorinostat is a histone deacetylase (HDAC) inhibitor that inhibits cell proliferation and induces apoptosis in solid tumors, and is in clinical trials for the treatment of glioblastoma (GBM). The goal of this study was to assess whether hyperpolarized 13 C MRS and magnetic resonance spectroscopic imaging (MRSI) can detect HDAC inhibition in GBM models. First, we confirmed HDAC inhibition in U87 GBM cells and evaluated real-time dynamic metabolic changes using a bioreactor system with live vorinostat-treated or control cells. We found a significant 40% decrease in the 13 C MRS-detectable ratio of hyperpolarized [1-13 C]lactate to hyperpolarized [1-13 C]pyruvate, [1-13 C]Lac/Pyr, and a 37% decrease in the pseudo-rate constant, kPL , for hyperpolarized [1-13 C]lactate production, in vorinostat-treated cells compared with controls. To understand the underlying mechanism for this finding, we assessed the expression and activity of lactate dehydrogenase (LDH) (which catalyzes the pyruvate to lactate conversion), its associated cofactor nicotinamide adenine dinucleotide, the expression of monocarboxylate transporters (MCTs) MCT1 and MCT4 (which shuttle pyruvate and lactate in and out of the cell) and intracellular lactate levels. We found that the most likely explanation for our finding that hyperpolarized lactate is reduced in treated cells is a 30% reduction in intracellular lactate levels that occurs as a result of increased expression of both MCT1 and MCT4 in vorinostat-treated cells. In vivo 13 C MRSI studies of orthotopic tumors in mice also showed a significant 52% decrease in hyperpolarized [1-13 C]Lac/Pyr when comparing vorinostat-treated U87 GBM tumors with controls, and, as in the cell studies, this metabolic finding was associated with increased MCT1 and MCT4 expression in HDAC-inhibited tumors. Thus, the 13 C MRSI-detectable decrease in hyperpolarized [1-13 C]lactate production could serve as a biomarker of response to HDAC inhibitors.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glioblastoma/diagnóstico por imagem , Glioblastoma/enzimologia , Inibidores de Histona Desacetilases/farmacologia , Imageamento por Ressonância Magnética , Acetilação , Animais , Reatores Biológicos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Histonas/metabolismo , Ácido Láctico/biossíntese , Metaboloma/efeitos dos fármacos , Camundongos Nus , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Ácido Pirúvico/metabolismo , Análise de Sobrevida , Simportadores/metabolismo , Vorinostat/farmacologia
17.
Sci Rep ; 8(1): 5805, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643433

RESUMO

The neurofibromin-1 tumor suppressor gene (NF1) is altered in approximately 20% of sporadic glioblastoma (GBM) cases. NF1 deficient GBM frequently shows a mesenchymal gene expression signature, suggesting a relationship between NF1 status and the tumor microenvironment. To identify changes in the production of secreted cytokines/chemokines in NF1 deficient glioma, we applied cytokine arrays to conditioned media from a panel of three GBM cell lines after siRNA-mediated NF1 knockdown. We identified increased secretion of platelet-derived growth factor AA (PDGF-AA), chitinase-3-like protein 1 (CHI3L1), interleukin-8 (IL-8), and endoglin (ENG) in different subsets of these cell lines. Secretion was associated with induction of the corresponding messenger RNA, suggesting a mechanism involving transcriptional upregulation. By contrast, in non-transformed immortalized normal human astrocytes, PDGF-AA secretion was increased upon NF1 knockdown, while secreted CHI3L1, ENG, and IL-8 were reduced or unchanged. Analysis of The Cancer Genome Atlas confirmed a relationship between glioma NF1 status and ENG and CHI3L1 in tumor samples. Overall, this study identifies candidate changes in secreted proteins from NF1 deficient glioma cells that could influence the tumor microenvironment, and suggests a direct link between NF1 loss and increased tumor cell production of CHI3L1 and endoglin, two factors implicated in mesenchymal identity in glioblastoma.


Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , Endoglina/metabolismo , Técnicas de Silenciamento de Genes , Neurofibromina 1/metabolismo , Neuroglia/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Neurofibromina 1/genética , RNA Mensageiro/análise
18.
Cancer Metab ; 6: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619216

RESUMO

BACKGROUND: Magnetic resonance spectroscopy (MRS) studies have identified elevated levels of the phospholipid precursor phosphocholine (PC) and phosphoethanolamine (PE) as metabolic hallmarks of cancer. Unusually, however, PC and PE levels are reduced in mutant isocitrate dehydrogenase 1 (IDHmut) gliomas that produce the oncometabolite 2-hydroxyglutarate (2-HG) relative to wild-type IDH1 (IDHwt) gliomas. The goal of this study was to determine the molecular mechanism underlying this unusual metabolic reprogramming in IDHmut gliomas. METHODS: Steady-state PC and PE were quantified using 31P-MRS. To quantify de novo PC and PE synthesis, we used 13C-MRS and measured flux to 13C-PC and 13C-PE in cells incubated with [1,2-13C]-choline and [1,2-13C]-ethanolamine. The activities of choline kinase (CK) and ethanolamine kinase (EK), the enzymes responsible for PC and PE synthesis, were quantified using 31P-MR-based assays. To interrogate the role of 2-HG, we examined IDHwt cells incubated with 2-HG and, conversely, IDHmut cells treated with the IDHmut inhibitor AGI-5198. To examine the role of hypoxia-inducible factor 1-α (HIF-1α), we silenced HIF-1α using RNA interference. To confirm our findings in vivo and in the clinic, we studied IDHwt and IDHmut orthotopic tumor xenografts and glioma patient biopsies. RESULTS: De novo synthesis of PC and PE was reduced in IDHmut cells relative to IDHwt. Concomitantly, CK activity and EK activity were reduced in IDHmut cells. Pharmacological manipulation of 2-HG levels established that 2-HG was responsible for reduced CK activity, EK activity, PC and PE. 2-HG has previously been reported to stabilize levels of HIF-1α, a known regulator of CK activity. Silencing HIF-1α in IDHmut cells restored CK activity, EK activity, PC and PE to IDHwt levels. Our findings were recapitulated in IDHmut orthotopic tumor xenografts and, most importantly, in IDHmut patient biopsies, validating our findings in vivo and in the clinic. CONCLUSIONS: This study identifies, to our knowledge for the first time, a direct role for 2-HG in the downregulation of CK and EK activity, and thereby, PC and PE synthesis in IDHmut gliomas. These results highlight the unusual reprogramming of phospholipid metabolism in IDHmut gliomas and have implications for the identification of MRS-detectable metabolic biomarkers associated with 2-HG status.

19.
Cancer Res ; 78(11): 2966-2977, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29545335

RESUMO

A subset of tumors use a recombination-based alternative lengthening of telomere (ALT) pathway to resolve telomeric dysfunction in the absence of TERT. Loss-of-function mutations in the chromatin remodeling factor ATRX are associated with ALT but are insufficient to drive the process. Because many ALT tumors express the mutant isocitrate dehydrogenase IDH1 R132H, including all lower grade astrocytomas and secondary glioblastoma, we examined a hypothesized role for IDH1 R132H in driving the ALT phenotype during gliomagenesis. In p53/pRb-deficient human astrocytes, combined deletion of ATRX and expression of mutant IDH1 were sufficient to create tumorigenic cells with ALT characteristics. The telomere capping complex component RAP1 and the nonhomologous DNA end joining repair factor XRCC1 were each downregulated consistently in these tumorigenic cells, where their coordinate reexpression was sufficient to suppress the ALT phenotype. RAP1 or XRCC1 downregulation cooperated with ATRX loss in driving the ALT phenotype. RAP1 silencing caused telomere dysfunction in ATRX-deficient cells, whereas XRCC1 silencing suppressed lethal fusion of dysfunctional telomeres by allowing IDH1-mutant ATRX-deficient cells to use homologous recombination and ALT to resolve telomeric dysfunction and escape cell death. Overall, our studies show how expression of mutant IDH1 initiates telomeric dysfunction and alters DNA repair pathway preferences at telomeres, cooperating with ATRX loss to defeat a key barrier to gliomagenesis.Significance: Studies show how expression of mutant IDH1 initiates telomeric dysfunction and alters DNA repair pathway preferences at telomeres, cooperating with ATRX loss to defeat a key barrier to gliomagenesis and suggesting new therapeutic options to treat low-grade gliomas. Cancer Res; 78(11); 2966-77. ©2018 AACR.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Desidrogenase/genética , Mutação/genética , Homeostase do Telômero/genética , Telômero/genética , Proteína Nuclear Ligada ao X/genética , Astrócitos/patologia , Astrocitoma/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina/genética , Reparo do DNA/genética , Regulação para Baixo/genética , Recombinação Homóloga/genética , Humanos , Fenótipo , Proteínas de Ligação a Telômeros/genética
20.
Cancer Res ; 78(9): 2290-2304, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358170

RESUMO

Tumor metabolism is reprogrammed to meet the demands of proliferating cancer cells. In particular, cancer cells upregulate synthesis of the membrane phospholipids phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdE) in order to allow for rapid membrane turnover. Nonetheless, we show here that, in mutant isocitrate dehydrogenase 1 (IDHmut) gliomas, which produce the oncometabolite 2-hydroxyglutarate (2-HG), PtdCho and PtdE biosynthesis is downregulated and results in lower levels of both phospholipids when compared with wild-type IDH1 cells. 2-HG inhibited collagen-4-prolyl hydroxylase activity, leading to accumulation of misfolded procollagen-IV in the endoplasmic reticulum (ER) of both genetically engineered and patient-derived IDHmut glioma models. The resulting ER stress triggered increased expression of FAM134b, which mediated autophagic degradation of the ER (ER-phagy) and a reduction in the ER area. Because the ER is the site of phospholipid synthesis, ER-phagy led to reduced PtdCho and PtdE biosynthesis. Inhibition of ER-phagy via pharmacological or molecular approaches restored phospholipid biosynthesis in IDHmut glioma cells, triggered apoptotic cell death, inhibited tumor growth, and prolonged the survival of orthotopic IDHmut glioma-bearing mice, pointing to a potential therapeutic opportunity. Glioma patient biopsies also exhibited increased ER-phagy and downregulation of PtdCho and PtdE levels in IDHmut samples compared with wild-type, clinically validating our observations. Collectively, this study provides detailed and clinically relevant insights into the functional link between oncometabolite-driven ER-phagy and phospholipid biosynthesis in IDHmut gliomas.Significance: Downregulation of phospholipid biosynthesis via ER-phagy is essential for proliferation and clonogenicity of mutant IDH1 gliomas, a finding with immediate therapeutic implications. Cancer Res; 78(9); 2290-304. ©2018 AACR.


Assuntos
Autofagia , Retículo Endoplasmático/metabolismo , Glioma/genética , Glioma/metabolismo , Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Fosfolipídeos/biossíntese , Animais , Autofagia/genética , Biomarcadores , Biópsia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioma/diagnóstico , Humanos , Isocitrato Desidrogenase/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Modelos Biológicos , Mutação , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...