Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(20): 20040-20051, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30109687

RESUMO

In the context of urban agriculture, where soils are frequently contaminated with metal(loid)s (TM), we studied the influence of vermicompost amendments on symbiotic fungal communities associated with plants grown in two metal-rich soils. Leek (Allium porrum L.) plants were grown with or without vermicompost in two metal-rich soils characterized by either geogenic or anthropogenic TM sources, to assess the influence of pollutant origin on soil-plant transfer. Fungal communities associated with the leek roots were identified by high throughput Illumina MiSeq and TM contents were measured using mass spectrometry. Vermicompost addition led to a dramatic change in the fungal community with a loss of diversity in the two tested soils. This effect could partially explain the changes in metal transfer at the soil-AMF-plant interface. Our results suggest being careful while using composts when growing edibles in contaminated soils. More generally, this study highlights the need for further research in the field of fungal communities to refine practical recommendations to gardeners. Graphical abstract.


Assuntos
Compostagem , Metais/farmacocinética , Micobioma/fisiologia , Cebolas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poluentes do Solo/farmacocinética , Agricultura/métodos , Micobioma/genética , Micorrizas , Cebolas/microbiologia , Solo/química , Microbiologia do Solo , Simbiose
2.
Sci Total Environ ; 624: 1140-1151, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929226

RESUMO

The influence of biofertilization with arbuscular mycorrhizal fungi (AMF) on trace metal and metalloids (TM) - Pb, Cd and Sb - uptake by leek (Allium porrum L.) grown in contaminated soils was investigated. The effect of biofertilization on human bioaccessibility of the TM in the plants was also examined. Leek were cultivated in one soil with geogenic TM sources and one soil with anthropogenic TM, to assess the influence of pollutant origin on soil-plant transfer. Leek were grown for six months on these contaminated soils, with and without a local AMF based biofertilizer. Fungal communities associated with leek roots were identified by high throughput sequencing (illumina Miseq®) metagenomic analysis. The TM compartmentation was studied using electron microscopy in plants tissues. In all the soils, biofertilization generated a loss of diversity favoring the AM fungal species Rhizophagus irregularis, which could explain the observed modification of metal transfer at the soil-AMF-plant interface. The human bioaccessibility of Sb increased in biofertilized treatments. Consequently, this latter result highlights a potential health risk of the use of this fertilization technique on contaminated soil since further field investigation is performed to better understand the mechanisms governing (1) the effect of AMF on TM bioaccessibility and (2) the evolution of AMF communities in contaminated soils.


Assuntos
Cebolas/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodiversidade , Monitoramento Ambiental , Fertilizantes , Jardinagem , Humanos , Micorrizas , Cebolas/microbiologia , Poluentes do Solo/análise , Poluentes do Solo/química
3.
Chemosphere ; 191: 272-279, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29040941

RESUMO

1. CONTEXT: Urban areas are often contaminated with various forms of persistent metal (loid) and emerging contaminants such as antimony (Sb). Thus, in the context of urban agriculture where sustainable practices such as biofertilizers application (arbuscular mycorrhizal fungi, AMF) could improve nutrient transfer from the soil to the vegetables, the effect of AMF on metal (loid) mobility and human bioaccessibility is still poorly known. 2. METHODS: The role of AMF in Sb uptake by lettuce and carrot grown in artificial substrate spiked with different Sb chemical species was investigated. Plants were grown under hydroponic conditions and half of the treatments received a concentrated spore solution to obtain mycorrhized and non-mycorrhized plants. Three weeks before harvest, plants were exposed to 10 mg.L-1 of either Sb2O3 or KSbO-tartrate (KSb). 3. RESULTS: The presence of AMF significantly increased its accumulation in carrots (all organs) with higher accumulation in roots. In lettuce, accumulation appeared to be dependent on the Sb chemical species. Moreover, it was observed for the first time that AMF changed the human bioaccessible fraction of Sb in edible organs. 4. IMPLICATIONS: The present results highlight a possible risk of Sb transfer from soil to edible plants cultivated in soil naturally containing AMF propagules, or when AMF are added as biofertilizers. After validating the influence of soil environment and AMF on Sb behavior in the field, these results should be considered in health risk assessments.


Assuntos
Antimônio/farmacocinética , Micorrizas/patogenicidade , Verduras/metabolismo , Agricultura/métodos , Exposição Ambiental , Jardins , Humanos , Raízes de Plantas/química , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
4.
Environ Sci Technol ; 51(9): 5242-5251, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28383257

RESUMO

Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal-containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NP transfer processes in leafy edible vegetables (i.e., lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10, or 15 days to various concentrations of CuO-NPs (0, 10, or 250 mg per plant). Biomass and gas exchange values were determined in relation to the Cu uptake rate, localization, and Cu speciation within the plant tissues. High foliar Cu uptake occurred after exposure for 15 days for lettuce [3773 mg (kg of dry weight)-1] and cabbage [4448 mg (kg of dry weight)-1], along with (i) decreased plant weight, net photosynthesis level, and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by scanning electron microscopy and energy dispersive X-ray microanalysis. Analysis of the CuO-NP transfer rate (7.8-242 µg day-1), translocation of Cu from leaves to roots and Cu speciation biotransformation in leaf tissues using electron paramagnetic resonance, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.


Assuntos
Agricultura , Cobre/toxicidade , Microanálise por Sonda Eletrônica , Lactuca/metabolismo , Nanopartículas Metálicas/toxicidade , Óxidos
5.
J Environ Sci (China) ; 46: 16-27, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27521932

RESUMO

At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles (PM). Different leafy vegetables (lettuces and cabbages) cultivated in RHIZOtest® devices were, therefore, exposed in a greenhouse for 5, 10 and 15days to various PbO PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves (up to 7392mg/kg dry weight (DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth (up to 68.2% in lettuce) and net photosynthesis (up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities (in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Chumbo/toxicidade , Material Particulado/toxicidade , Folhas de Planta/química , Verduras/química , Agricultura , Poluentes Atmosféricos/análise , China , Cidades , Chumbo/análise , Paquistão , Material Particulado/análise
6.
Environ Geochem Health ; 38(6): 1283-1301, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26825060

RESUMO

The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil-plant-atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg-1): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China's Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60-79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.


Assuntos
Disponibilidade Biológica , Contaminação de Alimentos/análise , Metais Pesados/análise , Material Particulado/análise , Verduras/química , Agricultura , China , Monitoramento Ambiental , Incineração , Folhas de Planta , Medição de Risco , Solo , Poluentes do Solo/análise , Emissões de Veículos
7.
Environ Geochem Health ; 38(3): 869-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26387097

RESUMO

Selenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (Se(IV) and Se(VI)) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L(-1) of selenium (Se(IV), Se(VI), Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility.


Assuntos
Disponibilidade Biológica , Selênio/metabolismo , Selênio/toxicidade , Zea mays/metabolismo , Animais , Contaminação de Alimentos , Humanos , Componentes Aéreos da Planta/química , Raízes de Plantas/química , Sementes/química , Selênio/química , Zea mays/crescimento & desenvolvimento
8.
Chemosphere ; 138: 10-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26025429

RESUMO

Earthworms are important organisms in soil macrofauna and play a key role in soil functionality, and consequently in terrestrial ecotoxicological risk assessments. Because they are frequently observed in soils strongly polluted by metals, the influence of earthworm bioturbation on Pb fate could therefore be studied through the use of Pb isotopes. Total Pb concentrations and isotopic composition ((206)Pb, (207)Pb and (208)Pb) were then measured in earthworms, casts and bulk soils sampled at different distance from a lead recycling factory. Results showed decreasing Pb concentrations with the distance from the factory whatever the considered matrix (bulk soils, earthworm bodies or cast samples) with higher concentrations in bulk soils than in cast samples. The bivariate plot (208)Pb/(206)Pb ratios versus (206)Pb/(207)Pb ratios showed that all samples can be considered as a linear mixing between metallic process particulate matter (PM) and geochemical Pb background. Calculated anthropogenic fraction of Pb varied between approximately 84% and 100%. Based on Pb isotopic signatures, the comparison between casts, earthworms and bulk soils allowed to conclude that earthworms preferentially ingest the anthropogenic lead fraction associated with coarse soil organic matter. Actually, soil organic matter was better correlated with Pb isotopic ratios than with Pb content in soils. The proposed hypothesis is therefore a decrease of soil organic matter turnover due to Pb pollution with consequences on Pb distribution in soils and earthworm exposure. Finally, Pb isotopes analysis constitutes an efficient tool to study the influence of earthworm bioturbation on Pb cycle in polluted soils.


Assuntos
Monitoramento Ambiental/métodos , Chumbo/análise , Oligoquetos/efeitos dos fármacos , Reciclagem , Poluentes do Solo/análise , Solo/química , Adsorção , Animais , França , Isótopos/análise , Chumbo/farmacocinética , Chumbo/toxicidade , Oligoquetos/metabolismo , Tamanho da Partícula , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade
9.
J Hazard Mater ; 289: 219-234, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-25726907

RESUMO

The increasing interest in urban agriculture highlights the crucial question of crop quality. The main objectives for environmental sustainability are a decrease in chemical inputs, a reduction in the level of pollutants, and an improvement in the soil's biological activity. Among inorganic pollutants emitted by vehicle traffic and some industrial processes in urban areas, antimony (Sb) is observed on a global scale. While this metalloid is known to be potentially toxic, it can transfer from the soil or the atmosphere to plants, and accumulate in their edible parts. Urban agriculture is developing worldwide, and could therefore increasingly expose populations to Sb. The objective of this review was in consequences to gather and interpret actual knowledge of Sb uptake and bioaccumulation by crops, to reveal investigative fields on which to focus. While there is still no legal maximal value for Sb in plants and soils, light has to be shed on its accumulation and the factors affecting it. A relative absence of data exists about the role of soil flora and fauna in the transfer, speciation and compartmentation of Sb in vegetables. Moreover, little information exists on Sb ecotoxicity for terrestrial ecosystems. A human risk assessment has finally been reviewed, with particular focus on Sb bioaccessibility.


Assuntos
Agricultura/métodos , Antimônio/análise , Poluentes do Solo/análise , Animais , Antimônio/química , Antimônio/toxicidade , Disponibilidade Biológica , Humanos , Plantas/química , Plantas/metabolismo , Medição de Risco , Poluentes do Solo/química , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...