Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 202(2): 162-192, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32935331

RESUMO

Since the emergence of COVID-19, caused by the SARS-CoV-2 virus at the end of 2019, there has been an explosion of vaccine development. By 24 September 2020, a staggering number of vaccines (more than 200) had started preclinical development, of which 43 had entered clinical trials, including some approaches that have not previously been licensed for human vaccines. Vaccines have been widely considered as part of the exit strategy to enable the return to previous patterns of working, schooling and socializing. Importantly, to effectively control the COVID-19 pandemic, production needs to be scaled-up from a small number of preclinical doses to enough filled vials to immunize the world's population, which requires close engagement with manufacturers and regulators. It will require a global effort to control the virus, necessitating equitable access for all countries to effective vaccines. This review explores the immune responses required to protect against SARS-CoV-2 and the potential for vaccine-induced immunopathology. We describe the profile of the different platforms and the advantages and disadvantages of each approach. The review also addresses the critical steps between promising preclinical leads and manufacturing at scale. The issues faced during this pandemic and the platforms being developed to address it will be invaluable for future outbreak control. Nine months after the outbreak began we are at a point where preclinical and early clinical data are being generated for the vaccines; an overview of this important area will help our understanding of the next phases.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , COVID-19 , Vacinas contra COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/imunologia , Humanos , Pneumonia Viral/imunologia , SARS-CoV-2 , Vacinação
2.
Biomaterials ; 209: 152-162, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048149

RESUMO

The efficient healing of critical-sized bone defects using synthetic biomaterial-based strategies is promising but remains challenging as it requires the development of biomaterials that combine a 3D porous architecture and a robust biological activity. Bioactive glasses (BGs) are attractive candidates as they stimulate a biological response that favors osteogenesis and vascularization, but amorphous 3D porous BGs are difficult to produce because conventional compositions crystallize during processing. Here, we rationally designed a porous, strontium-releasing, bioactive glass-based scaffold (pSrBG) whose composition was tailored to deliver strontium and whose properties were optimized to retain an amorphous phase, induce tissue infiltration and encourage bone formation. The hypothesis was that it would allow the repair of a critical-sized defect in an ovine model with newly-formed bone exhibiting physiological matrix composition and structural architecture. Histological and histomorphometric analyses combined with indentation testing showed pSrBG encouraged near perfect bone-to-material contact and the formation of well-organized lamellar bone. Analysis of bone quality by a combination of Raman spectral imaging, small-angle X-ray scattering, X-ray fluorescence and focused ion beam-scanning electron microscopy demonstrated that the repaired tissue was akin to that of normal, healthy bone, and incorporated small amounts of strontium in the newly formed bone mineral. These data show the potential of pSrBG to induce an efficient repair of critical-sized bone defects and establish the importance of thorough multi-scale characterization in assessing biomaterial outcomes in large animal models.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Vidro/química , Estrôncio/química , Animais , Regeneração Óssea/efeitos dos fármacos , Feminino , Porosidade , Ovinos , Análise Espectral Raman , Alicerces Teciduais/química
3.
Clin Hemorheol Microcirc ; 55(1): 133-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23445633

RESUMO

Gelatins functionalized with desaminotyrosine (DAT) or desaminotyrosyl tyrosine (DATT) form physically crosslinked hydrogels, due to the interactions between the introduced aromatic moieties and gelatin triple helices, whose extent depends on the thermal treatment of the material. The G-modulus of these hydrogels can be tailored to the range of the natural extracellular matrix by adjusting the degree of crosslinking. While these gelatin-based materials have been shown to be not angiogenic, the aim of the study was to evaluate whether these biomaterials influence the regulation of blood vessels when positioned on the chorionallantoic membrane (CAM) of fertilized eggs. The results clearly indicate that the DAT-functionalized gelatin led to an increase of the diameter of the blood vessels in the CAM, which at the same time is probably associated with an increased blood flow in these CAM vessels. The vessel diameters of the four groups (DAT-functionalized gelatin, DATT-functionalized gelatin, plain gelatin, control group without gelatin, each n = 10) differed significantly (p < 0.0001). Vessels in the CAM exposed to the DAT-functionalized gelatin showed with 36.4 µm ± 3.4 µm the largest mean diameters compared to the mean diameters of the samples exposed to DATT gelatin (16.0 µm ± 0.8 µm; p < 0.05) and the plain gelatin (21.2 µm ± 1.0 µm; p < 0.05), which both did not differ significantly from the vessels of the control group. The biocompatibility of the materials in vitro motivates the exploration of their application as matrix in local drug-release systems with short half-life times (one hour up to several days).


Assuntos
Membrana Corioalantoide/irrigação sanguínea , Gelatina/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Gelatina/química , Hidrogéis/química , Hidrogéis/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia
4.
Clin Hemorheol Microcirc ; 50(1-2): 55-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22538535

RESUMO

Gelatins functionalized with desaminotyrosine or desaminotyrosyl tyrosine form physically crosslinked polymer networks due to the interactions between the introduced aromatic moeties. In the swollen state, their mechanical properties can be tailored in a range similar to the elasticity of soft tissues. The aim of this study was to evaluate their potential as biomaterials by determining whether these materials - in comparison to plain gelatin - induce bleedings, thrombotic processes, or angiogenesis. These investigations were performed using the hen's egg chorioallantoic membrane (HETCAM) assay. These results indicate that the gelatin-based hydrogels did not possess angiogenic effects and also did not induce bleedings, thrombotic processes or vessel destruction (avascular zones). The biocompatibility of the materials in vitro motivates the exploration of their application as matrix in local drug-release systems with short half-life times (1 hour up to several days).


Assuntos
Membrana Corioalantoide/irrigação sanguínea , Reagentes de Ligações Cruzadas/química , Gelatina/química , Gelatina/farmacologia , Tirosina/análogos & derivados , Animais , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...