Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
3.
Comput Methods Programs Biomed ; 231: 107419, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842346

RESUMO

BACKGROUND AND OBJECTIVE: Osteoarthritis (OA) is a pervasive and debilitating disease, wherein degeneration of cartilage features prominently. Despite extensive research, we do not yet understand the cause or progression of OA. Studies show biochemical, mechanical, and biological factors affect cartilage health. Mechanical loads influence synthesis of biochemical constituents which build and/or break down cartilage, and which in turn affect mechanical loads. OA-associated biochemical profiles activate cellular activity that disrupts homeostasis. To understand the complex interplay among mechanical stimuli, biochemical signaling, and cartilage function requires integrating vast research on experimental mechanics and mechanobiology-a task approachable only with computational models. At present, mechanical models of cartilage generally lack chemo-biological effects, and biochemical models lack coupled mechanics, let alone interactions over time. METHODS: We establish a first-of-its kind virtual cartilage: a modeling framework that considers time-dependent, chemo-mechano-biologically induced turnover of key constituents resulting from biochemical, mechanical, and/or biological activity. We include the "minimally essential" yet complex chemical and mechanobiological mechanisms. Our 3-D framework integrates a constitutive model for the mechanics of cartilage with a novel model of homeostatic adaptation by chondrocytes to pathological mechanical stimuli, and a new application of anisotropic growth (loss) to simulate degradation clinically observed as cartilage thinning. RESULTS: Using a single set of representative parameters, our simulations of immobilizing and overloading successfully captured loss of cartilage quantified experimentally. Simulations of immobilizing, overloading, and injuring cartilage predicted dose-dependent recovery of cartilage when treated with suramin, a proposed therapeutic for OA. The modeling framework prompted us to add growth factors to the suramin treatment, which predicted even better recovery. CONCLUSIONS: Our flexible framework is a first step toward computational investigations of how cartilage and chondrocytes mechanically and biochemically evolve in degeneration of OA and respond to pharmacological therapies. Our framework will enable future studies to link physical activity and resulting mechanical stimuli to progression of OA and loss of cartilage function, facilitating new fundamental understanding of the complex progression of OA and elucidating new perspectives on causes, treatments, and possible preventions.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/patologia , Suramina/farmacologia , Modelos Biológicos , Osteoartrite/metabolismo , Osteoartrite/patologia , Condrócitos/patologia , Condrócitos/fisiologia
4.
J Magn Reson Imaging ; 58(1): 189-197, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36285338

RESUMO

BACKGROUND: Healthy articular cartilage presents structural gradients defined by distinct zonal patterns through the thickness, which may be disrupted in the pathogenesis of several disorders. Analysis of textural patterns using quantitative MRI data may identify structural gradients of healthy or degenerating tissue that correlate with early osteoarthritis (OA). PURPOSE: To quantify spatial gradients and patterns in MRI data, and to probe new candidate biomarkers for early severity of OA. STUDY TYPE: Retrospective study. SUBJECTS: Fourteen volunteers receiving total knee replacement surgery (eight males/two females/four unknown, average age ± standard deviation: 68.1 ± 9.6 years) and 10 patients from the OA Initiative (OAI) with radiographic OA onset (two males/eight females, average age ± standard deviation: 57.7 ± 9.4 years; initial Kellgren-Lawrence [KL] grade: 0; final KL grade: 3 over the 10-year study). FIELD STRENGTH/SEQUENCE: 3.0-T and 14.1-T, biomechanics-based displacement-encoded imaging, fast spin echo, multi-slice multi-echo T2 mapping. ASSESSMENT: We studied structure and strain in cartilage explants from volunteers receiving total knee replacement, or structure in cartilage of OAI patients with progressive OA. We calculated spatial gradients of quantitative MRI measures (eg, T2) normal to the cartilage surface to enhance zonal variations. We compared gradient values against histologically OA severity, conventional relaxometry, and/or KL grades. STATISTICAL TESTS: Multiparametric linear regression for evaluation of the relationship between residuals of the mixed effects models and histologically determined OA severity scoring, with a significance threshold at α = 0.05. RESULTS: Gradients of individual relaxometry and biomechanics measures significantly correlated with OA severity, outperforming conventional relaxometry and strain metrics. In human explants, analysis of spatial gradients provided the strongest relationship to OA severity (R2  = 0.627). Spatial gradients of T2 from OAI data identified variations in radiographic (KL Grade 2) OA severity in single subjects, while conventional T2 alone did not. DATA CONCLUSION: Spatial gradients of quantitative MRI data may improve the predictive power of noninvasive imaging for early-stage degeneration. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Masculino , Feminino , Humanos , Articulação do Joelho/patologia , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Biomarcadores
5.
J Orthop Res ; 41(8): 1754-1766, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36573479

RESUMO

In this study, we aimed to democratize access to convolutional neural networks (CNN) for segmenting cartilage volumes, generating state-of-the-art results for specialized, real-world applications in hospitals and research. Segmentation of cross-sectional and/or longitudinal magnetic resonance (MR) images of articular cartilage facilitates both clinical management of joint damage/disease and fundamental research. Manual delineation of such images is a time-consuming task susceptible to high intra- and interoperator variability and prone to errors. Thus, enabling reliable and efficient analyses of MRIs of cartilage requires automated segmentation of cartilage volumes. Two main limitations arise in the development of hospital- or population-specific deep learning (DL) models for image segmentation: specialized knowledge and specialized hardware. We present a relatively easy and accessible implementation of a DL model to automatically segment MRIs of human knees with state-of-the-art accuracy. In representative examples, we trained CNN models in 6-8 h and obtained results quantitatively comparable to state-of-the-art for every anatomical structure. We established and evaluated our methods using two publicly available MRI data sets originating from the Osteoarthritis Initiative, Stryker Imorphics, and Zuse Institute Berlin (ZIB), as representative test cases. We use Google Colabfor editing and adapting the Python codes and selecting the runtime environment leveraging high-performance graphical processing units. We designed our solution for novice users to apply to any data set with relatively few adaptations requiring only basic programming skills. To facilitate the adoption of our methods, we provide a complete guideline for using our methods and software, as well as the software tools themselves. Clinical significance: We establish and detail methods that clinical personal can apply to create their own DL models without specialized knowledge of DL nor specialized hardware/infrastructure and obtain results comparable with the state-of-the-art to facilitate both clinical management of joint damage/disease and fundamental research.


Assuntos
Cartilagem Articular , Aprendizado Profundo , Artropatias , Osteoartrite , Humanos , Estudos Transversais , Processamento de Imagem Assistida por Computador/métodos , Cartilagem Articular/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
6.
Acta Biomater ; 163: 339-350, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35811070

RESUMO

Cells are continuously exposed to dynamic environmental cues that influence their behavior. Mechanical cues can influence cellular and genomic architecture, gene expression, and intranuclear mechanics, providing evidence of mechanosensing by the nucleus, and a mechanoreciprocity between the nucleus and environment. Force disruption at the tissue level through aging, disease, or trauma, propagates to the nucleus and can have lasting consequences on proper functioning of the cell and nucleus. While the influence of mechanical cues leading to axonal damage has been well studied in neuronal cells, the mechanics of the nucleus following high impulse loading is still largely unexplored. Using an in vitro model of traumatic neural injury, we show a dynamic nuclear behavioral response to impulse stretch (up to 170% strain per second) through quantitative measures of nuclear movement, including tracking of rotation and internal motion. Differences in nuclear movement were observed between low and high strain magnitudes. Increased exposure to impulse stretch exaggerated the decrease in internal motion, assessed by particle tracking microrheology, and intranuclear displacements, assessed through high-resolution deformable image registration. An increase in F-actin puncta surrounding nuclei exposed to impulse stretch additionally demonstrated a corresponding disruption of the cytoskeletal network. Our results show direct biophysical nuclear responsiveness in neuronal cells through force propagation from the substrate to the nucleus. Understanding how mechanical forces perturb the morphological and behavioral response can lead to a greater understanding of how mechanical strain drives changes within the cell and nucleus, and may inform fundamental nuclear behavior after traumatic axonal injury. STATEMENT OF SIGNIFICANCE: The nucleus of the cell has been implicated as a mechano-sensitive organelle, courting molecular sensors and transmitting physical cues in order to maintain cellular and tissue homeostasis. Disruption of this network due to disease or high velocity forces (e.g., trauma) can not only result in orchestrated biochemical cascades, but also biophysical perturbations. Using an in vitro model of traumatic neural injury, we aimed to provide insight into the neuronal nuclear mechanics and biophysical responses at a continuum of strain magnitudes and after repetitive loads. Our image-based methods demonstrate mechanically-induced changes in cellular and nuclear behavior after high intensity loading and have the potential to further define mechanical thresholds of neuronal cell injury.


Assuntos
Núcleo Celular , Citoesqueleto , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fenômenos Mecânicos , Citoesqueleto de Actina , Actinas/metabolismo
7.
Osteoarthr Cartil Open ; 4(1): 100233, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36474465

RESUMO

Objective: We recently initiated microcracks, i.e. micron-scale cracks in the collagen networks of cartilage, using both single low-energy impacts and unconfined, cyclic compressions. We also tracked the propagation of microcracks after cyclic compressions simulating 12,000 walking strides. In this study, we aimed to determine the effect of one or more genipin treatments on: (1) the initiation of microcracks under mechanical impacts and (2) the subsequent propagation of microcracks under cyclic, unconfined compression. We hypothesized that treatments with genipin would improve the resistance of cartilage to microdamage, specifically reducing both the initiation of microcracks under impact loading and the propagation of microcracks under cyclic compression. Design: We tested 49 full-thickness, cylindrical osteochondral specimens. We incorporated one or two doses of genipin in between mechanical treatments, i.e. single low-energy mechanical impacts to initiate microcracks and unconfined, cyclic compressions to propagate microcracks. We also imaged specimens using second harmonic generation confocal microscopy, and analyzed the resulting images to quantify changes in morphologies (length, width, and depth) and orientations of microcracks. Finally, we used separate mixed-regression modeling to evaluate the effects of genipin treatments on mechanically induced microcracks. Results: Specimens treated with genipin presented significantly longer and marginally deeper microcracks after mechanical impacts. Two doses of genipin caused significantly longer and wider microcracks under propagation verses one dose. Conclusions: Our results do not support our hypothesis: unfortunately treatments with genipin, and the resulting mechanisms of cross-linking, do not provide resistance to microdamage, quantified as the initiation and propagation of microcracks.

8.
J Mech Behav Biomed Mater ; 136: 105466, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183667

RESUMO

The mechanical responses of most soft biological tissues rely heavily on networks of collagen fibers, thus quantifying the mechanics of both individual collagen fibers and networks of these fibers advances understanding of biological tissues in health and disease. The mechanics of type I collagen are well-studied and quantified. Yet no data exist on the tensile mechanical responses of individual type II collagen fibers nor of isolated networks comprised of type II collagen. We aimed to establish methods to facilitate studies of networked and individual type II collagen fibers within the native networked structure, specifically to establish best practices for isolating and mechanically testing type II collagen networks in tension. We systematically investigated mechanical tests of networks of type II collagen undergoing uniaxial extension, and quantified ranges for each of the important variables to help ensure that the experiment itself does not affect the measured mechanical parameters. Specifically we determined both the specimen (establishing networks of isolated collagen, the footprint and thickness of the specimen) and the mechanical test (both the device and the strain rate) to establish a repeatable and practical protocol. Mechanical testing of isolated networks of type II collagen fibers leveraging this protocol will lead to better understanding of the mechanics both of these networks and of the individual fibers. Such understanding may aid in developing and testing therapeutics, understanding inter-constituent interactions (and their roles in bulk-tissue biomechanics), investigating mechanical/biochemical modifications to networked type II collagen, and proposing, calibrating, and validating constitutive models for finite element analyses.


Assuntos
Colágeno Tipo I , Colágeno , Colágeno Tipo II , Estresse Mecânico , Colágeno/química , Fenômenos Biomecânicos , Testes Mecânicos
9.
J Mech Behav Biomed Mater ; 127: 105083, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093713

RESUMO

Mechanotransduction plays a central role in evoking pain from the distal colon and rectum (colorectum) where embedded sensory nerve endings convert micromechanical stresses and strains into neural action potentials. The colorectum displays strong through-thickness and longitudinal heterogeneity with collagen concentrated in the submucosa thus indicating the significant load-bearing role of this layer. The density of sensory nerve endings is also significantly the greatest in the submucosa, suggesting a nociceptive function. Thus biomechanical heterogeneity in the colorectum influences the micromechanical stresses and strains surrounding afferent endings embedded within different layers of the colorectum which is critical for the mechanotransduction of various mechanical stimuli. In this study we aimed to: (1) calibrate and validate a three-layered computational model of the colorectum; (2) predict intra-tissue distributions of stresses and strains during mechanical stimulation of the colorectum ex vivo (i.e. circumferential stretching, punctuate probing, and mucosal shearing); and (3) establish a methodology to calculate local micromechanical stresses and strains surrounding afferent nerve endings embedded in the colorectum. We established three-layered FE models that include mucosa, submucosa, and muscular layers, and incorporated residual stretches, to calculate intra-tissue stresses and strains when the colorectum undergoes the mechanical stimuli used to characterize afferent neural encoding ex vivo. Finally, we established a methodology for detailed calculations of the local micromechanical stresses and strains surrounding afferent endings embedded in the colorectum and demonstrated this with a representative example. Our novel methodologies will bridge the existing neurophysiological and biomechanical evidence from experiments to advance our mechanistic understanding of colorectal mechanotransduction.


Assuntos
Mecanotransdução Celular , Reto , Animais , Colo , Camundongos , Fibras Nervosas , Pelve , Reto/inervação
10.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G644-G657, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533318

RESUMO

Colorectal hypersensitivity and sensitization of both mechanosensitive and mechanically insensitive afferents develop after intracolonic instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in the mouse, a model of postinfectious irritable bowel syndrome. In mice in which ∼80% of extrinsic colorectal afferents were labeled genetically using the promotor for vesicular glutamate transporter type 2 (VGLUT2), we systematically quantified the morphology of VGLUT2-positive axons in mouse colorectum 7-28 days following intracolonic TNBS treatment. After removal, the colorectum was distended (20 mmHg), fixed with paraformaldehyde, and optically cleared to image VGLUT2-positive axons throughout the colorectal wall thickness. We conducted vector path tracing of individual axons to allow systematic quantification of nerve fiber density and shape. Abundant VGLUT2-positive nerve fibers were present in most layers of the colorectum, except the serosal and longitudinal muscular layers. A small percentage of VGLUT2-positive myenteric plexus neurons was also detected. Intracolonic TNBS treatment significantly reduced the number of VGLUT2-positive nerve fibers in submucosal, myenteric plexus, and mucosal layers at day 7 post-TNBS, which mostly recovered by day 28. We also found that almost all fibers in the submucosa were meandering and curvy, with ∼10% showing pronounced curviness (quantified by the linearity index). TNBS treatment resulted in a significant reduction of the proportions of pronounced curvy fibers in the rectal region at 28 days post-TNBS. Altogether, the present morphological study reveals profound changes in the distribution of VGLUT2-positive fibers in mouse colorectum undergoing TNBS-induced colitis and draws attention to curvy fibers in the submucosa with potential roles in visceral nociception.NEW & NOTEWORTHY We conducted genetic labeling and optical clearing to visualize extrinsic sensory nerve fibers in whole-mount colorectum, which revealed widespread presence of axons in the submucosal layer. Remarkably, axons in the submucosa were meandering and curvy, in contrast to axons in other layers generally aligned with the basal tissues. Intracolonic TNBS treatment led to pronounced changes of nerve fiber density and curviness, suggesting nerve fiber morphologies as potentially contributing factors to sensory sensitization.


Assuntos
Colite/patologia , Colo/inervação , Frutose/química , Gânglios Espinais/patologia , Glicerol/análogos & derivados , Reto/inervação , Células Receptoras Sensoriais/patologia , Soluções/química , Fixação de Tecidos , Ácido Trinitrobenzenossulfônico , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Glicerol/química , Imuno-Histoquímica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Células Receptoras Sensoriais/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética
11.
J Mech Behav Biomed Mater ; 115: 104252, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33385951

RESUMO

We aimed to determine the longitudinal effects of low-energy (generally considered non-injurious) impact loading on (1) chondrocyte proliferation, (2) chondroprogenitor cell activity, and (3) EGFR signaling. In an in vitro study, we assessed 127 full-thickness, cylindrical osteochondral plugs of bovine cartilage undergoing either single, uniaxial unconfined impact loads with energy densities in the range of 1.5-3.2mJ/mm3 or no impact (controls). We quantified cell responses at two, 24, 48, and 72 h via immunohistochemical labeling of Ki67, Sox9, and pEGFR antibodies. We compared strain, stress, and impact energy density as predictors for mechanotransductive responses from cells, and fit significant correlations using linear regressions. Our study demonstrates that low-energy mechanical impacts (1.5-3.2mJ/mm3) generally stimulate time-dependent anabolic responses in the superficial zone of articular cartilage and catabolic responses in the middle and deep zones. We also found that impact energy density is the most consistent predictor of cell responses to low-energy impact loading. These spatial and temporal changes in chondrocyte behavior result directly from low-energy mechanical impacts, revealing a new level of mechanotransductive sensitivity in chondrocytes not previously appreciated.


Assuntos
Cartilagem Articular , Condrócitos , Animais , Bovinos , Transdução de Sinais , Estresse Mecânico
12.
J Mech Behav Biomed Mater ; 113: 104116, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049619

RESUMO

Visceral pain from the distal colon and rectum (colorectum) is a major complaint of patients with irritable bowel syndrome. Mechanotransduction of colorectal distension/stretch appears to play a critical role in visceral nociception, and further understanding requires improved knowledge of the micromechanical environments at different sub-layers of the colorectum. In this study, we conducted nonlinear imaging via second harmonic generation to quantify the thickness of each distinct through-thickness layer of the colorectum, as well as the principal orientations, corresponding dispersions in orientations, and the distributions of diameters of collagen fibers within each of these layers. From C57BL/6 mice of both sexes (8-16 weeks of age, 25-35 g), we dissected the distal 30 mm of the large bowel including the colorectum, divided these into three even segments, and harvested specimens (~8 × 8 mm2) from each segment. We stretched the specimens either by colorectal distension to 20 mmHg (reference) or 80 mmHg (deformed) or by biaxial stretch to 10 mN (reference) or 80 mN (deformed), and fixed them with 4% paraformaldehyde. We then conducted SHG imaging through the wall thickness and analyzed post-hoc using custom-built software to quantify the orientations of collagen fibers in all distinct layers. We also quantified the thickness of each layer of the colorectum, and the corresponding distributions of collagen density and diameters of fibers. We found collagen concentrated in the submucosal layer. The average diameter of collagen fibers was greatest in the submucosal layer, followed by the serosal and muscular layers. Collagen fibers aligned with muscle fibers in the two muscular layers, whereas their orientation varied greatly with location in the serosal layer. In colonic segments, thick collagen fibers in the submucosa presented two major orientations aligned approximately ±30° to the axial direction, and form a patterned network. Our results indicate the submucosa is likely the principal passive load-bearing structure of the colorectum. In addition, afferent endings in those collagen-rich regions present likely candidates of colorectal nociceptors to encode noxious distension/stretch.


Assuntos
Colágeno , Colo , Mecanotransdução Celular , Reto , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia
13.
J Mech Behav Biomed Mater ; 114: 104150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33214108

RESUMO

Hydrogels have seen widespread application across biomedical sciences and there is considerable interest in using hydrogels, including agarose, for creating in vitro three-dimensional environments to grow cells and study mechanobiology and mechanotransduction. Recent advances in the preparation of agarose gels enable successful encapsulation of viable cells at gel concentrations as high as 5%. Agarose with a range of gel concentrations can thus serve as an experimental model mimicking changes in the 3-D microenvironment of cells during disease progression and can facilitate experiments aimed at probing the corresponding mechanobiology, e.g. the evolving mechanobiology of chondrocytes during the progression of osteoarthritis. Importantly, whether stresses (forces) or strains (displacements) drive mechanobiology and mechanotransduction is currently unknown. We can use experiments to quantify mechanical properties of hydrogels, and imaging to estimate microstructure and even strains; however, only computational models can estimate intra-gel stresses in cell-seeded agarose constructs because the required in vitro experiments are currently impossible. Finite element modeling is well-established for (computational) mechanical analyses, but accurate constitutive models for modeling the 3-D mechanical environments of cells within high-stiffness agarose with varying gel concentrations are currently unavailable. In this study we aimed to establish a 3-D constitutive model of high-stiffness agarose with a range of gel concentrations. We applied a multi-step, physics-based optimization approach to separately fit subsets of model parameters and help achieve robust convergence. Our constitutive model, fitted to experimental data on progressive stress-relaxations, was able to predict reaction forces determined from independent experiments on cyclical loading. Our model has broad applications in finite element modeling aimed at interpreting mechanical experiments on agarose specimens seeded with cells, particularly in predicting distributions of intra-gel stresses. Our model and fitted parameters enable more accurate finite element simulations of high-stiffness agarose constructs, and thus better understanding of experiments aimed at mechanobiology, mechanotransduction, or other applications in tissue engineering.


Assuntos
Condrócitos , Mecanotransdução Celular , Análise de Elementos Finitos , Sefarose , Estresse Mecânico , Engenharia Tecidual
14.
Bioengineering (Basel) ; 7(4)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255522

RESUMO

Abnormal colorectal biomechanics and mechanotransduction associate with an array of gastrointestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, diverticula disease, anorectal disorders, ileus, and chronic constipation. Visceral pain, principally evoked from mechanical distension, has a unique biomechanical component that plays a critical role in mechanotransduction, the process of encoding mechanical stimuli to the colorectum by sensory afferents. To fully understand the underlying mechanisms of visceral mechanical neural encoding demands focused attention on the macro- and micro-mechanics of colon tissue. Motivated by biomechanical experiments on the colon and rectum, increasing efforts focus on developing constitutive frameworks to interpret and predict the anisotropic and nonlinear biomechanical behaviors of the multilayered colorectum. We will review the current literature on computational modeling of the colon and rectum as well as the mechanical neural encoding by stretch sensitive afferent endings, and then highlight our recent advances in these areas. Current models provide insight into organ- and tissue-level biomechanics as well as the stretch-sensitive afferent endings of colorectal tissues yet an important challenge in modeling theory remains. The research community has not connected the biomechanical models to those of mechanosensitive nerve endings to create a cohesive multiscale framework for predicting mechanotransduction from organ-level biomechanics.

15.
Bioengineering (Basel) ; 7(4)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086503

RESUMO

Many lower gastrointestinal diseases are associated with altered mechanical movement and deformation of the large intestine, i.e., the colon and rectum. The leading reason for patients' visits to gastrointestinal clinics is visceral pain, which is reliably evoked by mechanical distension rather than non-mechanical stimuli such as inflammation or heating. The macroscopic biomechanics of the large intestine were characterized by mechanical tests and the microscopic by imaging the load-bearing constituents, i.e., intestinal collagen and muscle fibers. Regions with high mechanical stresses in the large intestine (submucosa and muscularis propria) coincide with locations of submucosal and myenteric neural plexuses, indicating a functional interaction between intestinal structural biomechanics and enteric neurons. In this review, we systematically summarized experimental evidence on the macro- and micro-scale biomechanics of the colon and rectum in both health and disease. We reviewed the heterogeneous mechanical properties of the colon and rectum and surveyed the imaging methods applied to characterize collagen fibers in the intestinal wall. We also discussed the presence of extrinsic and intrinsic neural tissues within different layers of the colon and rectum. This review provides a foundation for further advancements in intestinal biomechanics by synergistically studying the interplay between tissue biomechanics and enteric neurons.

16.
J Vis Exp ; (158)2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32338652

RESUMO

The center of resistance (CRES) is regarded as the fundamental reference point for predictable tooth movement. The methods used to estimate the CRES of teeth range from traditional radiographic and physical measurements to in vitro analysis on models or cadaver specimens. Techniques involving finite element analysis of high-dose micro-CT scans of models and single teeth have shown a lot of promise, but little has been done with newer, low-dose, and low resolution cone beam computed tomography (CBCT) images. Also, the CRES for only a few select teeth (i.e., maxillary central incisor, canine, and first molar) have been described; the rest have been largely ignored. There is also a need to describe the methodology of determining the CRES in detail, so that it becomes easy to replicate and build upon. This study used routine CBCT patient images for developing tools and a workflow to obtain finite element models for locating the CRES of maxillary teeth. The CBCT volume images were manipulated to extract three-dimensional (3D) biological structures relevant in determining the CRES of the maxillary teeth by segmentation. The segmented objects were cleaned and converted into a virtual mesh made up tetrahedral (tet4) triangles having a maximum edge length of 1 mm with 3matic software. The models were further converted into a solid volumetric mesh of tetrahedrons with a maximum edge length of 1 mm for use in finite element analysis. The engineering software, Abaqus, was used to preprocess the models to create an assembly and set material properties, interaction conditions, boundary conditions, and load applications. The loads, when analyzed, simulated the stresses and strains on the system, aiding in locating the CRES. This study is the first step in accurate prediction of tooth movement.


Assuntos
Análise de Elementos Finitos , Imageamento Tridimensional/métodos , Dente/fisiologia , Tomografia Computadorizada de Feixe Cônico , Humanos , Maxila/diagnóstico por imagem , Modelos Dentários , Software , Dente/diagnóstico por imagem , Técnicas de Movimentação Dentária/instrumentação
17.
J Mech Behav Biomed Mater ; 103: 103595, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090923

RESUMO

Human joints, particularly those of extremities, experience a significant range of temperatures in vivo. Joint temperature influences the mechanics of both joint and cartilage, and the mechanics of cartilage can affect the temperature of both joint and cartilage. Thermal treatments and tissue repairs, such as thermal chondroplasty, and ex vivo tissue engineering may also expose cartilage to supraphysiological temperatures. Furthermore, although cartilage undergoes principally compressive loads in vivo, shear strain plays a significant role at larger compressive strains. Thus, we aimed to determine whether and how the bulk mechanical responses of cartilage undergoing large-strain shear change (1) within the range of temperatures relevant in vivo, and (2) both during and after supraphysiological thermal treatments. We completed large-strain shear tests (10 and 15%) at four thermal conditions: 24∘C and 40∘C to span the in vivo range, and 70∘C and 24∘C repeated after 70∘C to explore mechanics during and after potential treatments. We calculated the bulk mechanical responses (strain-energy dissipation densities, peak-to-peak shear stresses, and peak-effective shear moduli) as of function of temperature and used statistical methods to probe significant differences. To probe the mechanisms underlying differences we assessed specimens, principally the type II collagen, with imaging (second harmonic generation and transmission electron microscopies, and histology) and assessed the temperature-dependent mechanics of type II collagen molecules within cartilage using steered molecular dynamics simulations. Our results suggest that the bulk mechanical responses of cartilage depend significantly on temperature both within the in vivo range and at supraphysiological temperatures, showing significant reductions in all mechanical measures with increasing temperature. Using imaging and simulations we determined that one underlying mechanism explaining our results may be changes in the molecular deformation profiles of collagen molecules versus temperature, likely compounded at larger length scales. These new insights into the mechanics of cartilage and collagen may suggest new treatment targets for damaged or osteoarthritic cartilage.


Assuntos
Cartilagem Articular , Colágeno , Humanos , Estresse Mecânico , Temperatura , Engenharia Tecidual
18.
Osteoarthr Cartil Open ; 2(4): 100086, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474870

RESUMO

Objective: We aimed to directly quantify the zone-specific evolution in morphology of collagen fibers and networks in human cartilage during the progression of early osteoarthritis. Collagen fibers exhibit depth-dependent orientations and diameters crucial to their mechanical roles. Cartilage degenerates in osteoarthritis, affecting the morphology of the collagen network and ultimately the intra-tissue mechanics. Design: We obtained specimens of human cartilage from healthy human knees ( n = 3 ) and from total knee arthroplasties ( n = 5 ). We utilized TEM and custom image analyses to visualize and quantify distributions in principal orientation, dispersion (about the principal orientation), and diameter of collagen fibers in the early grades of OA within each through-thickness zone. We then used histological and statistical analyses to probe for significant changes in the zone-specific evolution in collagen-network morphology as a function of Osteoarthritis Research Society International (OARSI) grade. Results: Dispersion in the alignment of collagen fibers increased with progression of early OA in both the superficial and deep zones, and decreased in the middle zone, while principal orientation did not change significantly. The non-normal and right-skewed distributions in fiber diameters did not evolve with the progression of OA. Conclusions: We provide the research community with quantitative data (1) on the through-thickness morphology of collagen in healthy cartilage and (2) on the evolution of through-thickness morphology of collagen with progressing early OA. Such quantitative data facilitate an improved mechanistic understanding of the progression of OA, and may facilitate identifying image-based biomarkers and treatment targets, and ultimately finding clinical interventions for OA.

19.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G349-G358, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268771

RESUMO

Mechanical distension beyond a particular threshold evokes visceral pain from distal colon and rectum (colorectum), and thus biomechanics plays a central role in visceral nociception. In this study we focused on the layered structure of the colorectum through the wall thickness and determined the biomechanical properties of layer-separated colorectal tissue. We harvested the distal 30 mm of mouse colorectum and dissected this tissue into inner and outer composite layers. The inner composite consists of the mucosa and submucosa, whereas the outer composite includes the muscular layers and serosa. We divided each composite axially into three 10-mm-long segments and conducted biaxial mechanical extension tests and opening-angle measurements for each tissue segment. In addition, we quantified the thickness of the rich collagen network in the submucosa by nonlinear imaging via second-harmonic generation (SHG). Our results reveal that the inner composite is slightly stiffer in the axial direction, whereas the outer composite is stiffer circumferentially. The stiffness of the inner composite in the axial direction is about twice that in the circumferential direction, consistent with the orientations of collagen fibers in the submucosa approximately ±30° to the axial direction. Submucosal thickness measured by SHG showed no difference from proximal to distal colorectum under the load-free condition, which likely contributes to the comparable tension stiffness of the inner composite along the colorectum. This, in turn, strongly indicates the submucosa as the load-bearing structure of the colorectum. This further implies nociceptive roles for the colorectal afferent endings in the submucosa, which likely encode tissue-injurious mechanical distension.NEW & NOTEWORTHY Visceral pain from distal colon and rectum (colorectum) is usually elicited from mechanical distension/stretch, rather than from heating, cutting, or pinching, which usually evoke pain from the skin. We conducted layer-separated biomechanical tests on mouse colorectum and identified an unexpected role of submucosa as the load-bearing structure of the colorectum. Outcomes of this study will focus attention on sensory nerve endings in the submucosa that likely encode tissue-injurious distension/stretch to cause visceral pain.


Assuntos
Colo/inervação , Neoplasias Colorretais/fisiopatologia , Reto/inervação , Suporte de Carga/fisiologia , Animais , Feminino , Masculino , Camundongos , Modelos Biológicos , Nociceptividade/fisiologia , Estresse Mecânico , Dor Visceral/fisiopatologia
20.
Am J Physiol Gastrointest Liver Physiol ; 316(4): G473-G481, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702901

RESUMO

Visceral pain is one of the principal complaints of patients with irritable bowel syndrome, and this pain is reliably evoked by mechanical distension and stretch of distal colon and rectum (colorectum). This study focuses on the biomechanics of the colorectum that could play critical roles in mechanical neural encoding. We harvested the distal 30 mm of the colorectum from mice, divided evenly into three 10-mm-long segments (colonic, intermediate and rectal), and conducted biaxial mechanical stretch tests and opening-angle measurements for each tissue segment. In addition, we determined the collagen fiber orientations and contents across the thickness of the colorectal wall by nonlinear imaging via second harmonic generation (SHG). Our results reveal a progressive increase in tissue compliance and prestress from colonic to rectal segments, which supports prior electrophysiological findings of distinct mechanical neural encodings by afferents in the lumbar splanchnic nerves (LSN) and pelvic nerves (PN) that dominate colonic and rectal innervations, respectively. The colorectum is significantly more viscoelastic in the circumferential direction than in the axial direction. In addition, our SHG results reveal a rich collagen network in the submucosa and orients approximately ±30° to the axial direction, consistent with the biaxial test results presenting almost twice the stiffness in axial direction versus the circumferential direction. Results from current biomechanical study strongly indicate the prominent roles of local tissue biomechanics in determining the differential mechanical neural encoding functions in different regions of the colorectum. NEW & NOTEWORTHY Mechanical distension and stretch-not heat, cutting, or pinching-reliably evoke pain from distal colon and rectum. We report different local mechanics along the longitudinal length of the colorectum, which is consistent with the existing literature on distinct mechanotransduction of afferents innervating proximal and distal regions of the colorectum. This study draws attention to local mechanics as a potential determinant factor for mechanical neural encoding of the colorectum, which is crucial in visceral nociception.


Assuntos
Colo , Síndrome do Intestino Irritável/fisiopatologia , Reto , Nervos Esplâncnicos/fisiopatologia , Dor Visceral , Animais , Fenômenos Biomecânicos , Colo/inervação , Colo/patologia , Colo/fisiopatologia , Modelos Animais de Doenças , Região Lombossacral/inervação , Mecanorreceptores , Camundongos , Pelve/inervação , Reto/inervação , Reto/patologia , Reto/fisiopatologia , Microscopia de Geração do Segundo Harmônico/métodos , Dor Visceral/etiologia , Dor Visceral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA