Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Zool ; 9(1): 10, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685130

RESUMO

BACKGROUND: Mammalian skeletons are largely formed before birth. Heterochronic changes in skeletal formation can be investigated by comparing the order of ossification for different elements of the skeleton. Due to the challenge of collecting prenatal specimens in viviparous taxa, opportunistically collected museum specimens provide the best material for studying prenatal skeletal development across many mammalian species. Previous studies have investigated ossification sequence in a range of mammalian species, but little is known about the pattern of bone formation in Carnivora. Carnivorans have diverse ecologies, diets, and biomechanical specializations and are well-suited for investigating questions in evolutionary biology. Currently, developmental data on carnivorans is largely limited to domesticated species. To expand available data on carnivoran skeletal development, we used micro-computed tomography (micro-CT) to non-invasively evaluate the degree of ossification in all prenatal carnivoran specimens housed in the Harvard Museum of Comparative Zoology. By coding the presence or absence of bones in each specimen, we constructed ossification sequences for each species. Parsimov-based genetic inference (PGi) was then used to identify heterochronic shifts between carnivoran lineages and reconstruct the ancestral ossification sequence of Carnivora. RESULTS: We used micro-CT to study prenatal ossification sequence in six carnivora species: Eumetopias jubatus (Steller sea lion, n = 6), Herpestes javanicus (small Indian mongoose, n = 1), Panthera leo (lion, n = 1), Urocyon cinereoargenteus (gray fox, n = 1), Ursus arctos arctos (Eurasian brown bear, n = 1), and Viverricula indica (small Indian civet, n = 5). Due to the relatively later stage of collection for the available specimens, few heterochronic shifts were identified. Ossification sequences of feliform species showed complete agreement with the domestic cat. In caniforms, the bear and fox ossification sequences largely matched the dog, but numerous heterochronic shifts were identified in the sea lion. CONCLUSIONS: We use museum specimens to generate cranial and postcranial micro-CT data on six species split between the two major carnivoran clades: Caniformia and Feliformia. Our data suggest that the ossification sequence of domestic dogs and cats are likely good models for terrestrial caniforms and feliforms, respectively, but not pinnipeds.

2.
Anat Rec (Hoboken) ; 307(4): 726-743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240478

RESUMO

The End-Permian Mass Extinction marked a critical turning point in Earth's history, and the biological recovery that followed the crisis led to the emergence of several modern vertebrate and invertebrate taxa. Even considering the importance of the Early Triassic biotic recovery for the evolution of modern faunas and floras, our knowledge of this event is still hindered by the sparse sampling of crucial geological formations. This leaves our understanding of Early Triassic ecosystems fundamentally biased toward productive and historically well-explored geological units. Recent surveys in poorly known Gondwanan localities, such as those within the Sanga do Cabral Formation in southern Brazil, have unveiled insights into Early Triassic terrestrial ecosystems, shedding light on a diverse and previously unknown tetrapod fauna. Here, we report the discovery of a new temnospondyl genus and species in the Lower Triassic Sanga do Cabral Formation. The new taxon can be confidently assigned to the Benthosuchidae, a stereospondyl clade with a distribution previously restricted to the East European Platform. Phylogenetic analysis confirms the relationship of the new genus to the trematosaurian lineage, being closely related to the genus Benthosuchus. Our results raise questions about the biogeographical history of stereospondyls after the End-Permian Mass Extinction and suggest a potential connection between Russian and South American Early Triassic faunas. Further investigations are needed to thoroughly explore the potential dispersal routes that may explain this seemingly unusual biogeographical pattern.


Assuntos
Biodiversidade , Ecossistema , Filogenia , Fósseis , Brasil , Extinção Biológica , Evolução Biológica
3.
Anat Rec (Hoboken) ; 307(5): 1826-1896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37727023

RESUMO

This paper is the second in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the hindlimb. Although the hindlimb skeleton did not undergo as marked a transformation on the line to mammals as did the forelimb skeleton, the anatomy of extant tetrapods indicates that major changes to musculature have nonetheless occurred. To better understand these changes, this study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 80 character-state complexes covering all muscles crossing the hip, knee, and ankle joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. The evolutionary history of mammalian hindlimb musculature was complex, nonlinear, and protracted, with several instances of convergence and pulses of anatomical transformation that continued well into the crown group. Numerous traits typically regarded as characteristically "mammalian" have much greater antiquity than previously recognized, and for some traits, most synapsids are probably more reflective of the ancestral amniote condition than are extant saurians. More broadly, this study highlights the utility of the fossil record in interpreting the evolutionary appearance of distinctive anatomies.


Assuntos
Evolução Biológica , Fósseis , Animais , Filogenia , Mamíferos/fisiologia , Membro Posterior/anatomia & histologia , Músculos , Articulação do Joelho/anatomia & histologia
4.
Anat Rec (Hoboken) ; 307(5): 1764-1825, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37726984

RESUMO

This paper is the first in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the forelimb. Understanding forelimb muscular anatomy in extinct synapsids, and how this changed on the line to mammals, can provide important perspective for interpreting skeletal and functional evolution in this lineage, and how the diversity of forelimb functions in extant mammals arose. This study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 73 character-state complexes covering all muscles crossing the shoulder, elbow, and wrist joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. In addition to producing a comprehensive documentation of osteological evidence for muscle attachments in extinct synapsids, this work has clarified homology hypotheses across disparate taxa and helped resolve competing hypotheses of muscular anatomy in extinct species. The evolutionary history of mammalian forelimb musculature was a complex and nonlinear narrative, punctuated by multiple instances of convergence and concentrated phases of anatomical transformation. More broadly, this study highlights the great insight that a fossil-based perspective can provide for understanding the assembly of novel body plans.


Assuntos
Evolução Biológica , Fósseis , Animais , Filogenia , Mamíferos/fisiologia , Membro Anterior/anatomia & histologia , Músculo Esquelético/anatomia & histologia
5.
Sci Rep ; 13(1): 4459, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019927

RESUMO

Herbivory evolved independently in several tetrapod lineages during the Late Carboniferous and became more widespread throughout the Permian Period, eventually leading to the basic structure of modern terrestrial ecosystems. Here we report a new taxon of edaphosaurid synapsid based on two fossils recovered from the Moscovian-age cannel coal of Linton, Ohio, which we interpret as an omnivore-low-fibre herbivore. Melanedaphodon hovaneci gen. et sp. nov. provides the earliest record of an edaphosaurid to date and is one of the oldest known synapsids. Using high-resolution X-ray micro-computed tomography, we provide a comprehensive description of the new taxon that reveals similarities between Late Carboniferous and early Permian (Cisuralian) members of Edaphosauridae. The presence of large bulbous, cusped, marginal teeth alongside a moderately-developed palatal battery, distinguishes Melanedaphodon from all other known species of Edaphosauridae and suggests adaptations for processing tough plant material already appeared among the earliest synapsids. Furthermore, we propose that durophagy may have provided an early pathway to exploit plant resources in terrestrial ecosystems.


Assuntos
Ecossistema , Herbivoria , Animais , Microtomografia por Raio-X , Fósseis , Mamíferos , Evolução Biológica , Filogenia
6.
Nat Ecol Evol ; 7(1): 10-19, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396970

RESUMO

Many accounts of the early history of actinopterygians (ray-finned fishes) posit that the end-Devonian mass extinction had a major influence on their evolution. Existing phylogenies suggest this episode could have acted as a bottleneck, paring the early diversity of the group to a handful of survivors. This picture, coupled with increases in taxonomic and morphological diversity in the Carboniferous, contributes to a model of explosive post-extinction radiation. However, most actinopterygians from within a roughly 20-million year (Myr) window surrounding the extinction are poorly known, contributing to uncertainty about the meaning of these patterns. Here, we report an exceptionally preserved fossil from 7 Myr before the extinction that reveals unexpected anatomical features. Palaeoneiros clackorum gen. et sp. nov. nests within a clade of post-Devonian species and, in an expanded phylogenetic analysis, draws multiple lineages of Carboniferous actinopterygians into the Devonian. This suggests cryptic but extensive lineage diversification in the latest Devonian, followed by more conspicuous feeding and locomotor structure diversification in the Carboniferous. Our revised model matches more complex patterns of divergence, survival and diversification around the Devonian/Carboniferous boundary in other vertebrate clades. It also fundamentally recalibrates the onset of diversification early in the history of this major radiation.


Assuntos
Evolução Biológica , Extinção Biológica , Animais , Filogenia , Sobrevivência , Vertebrados
7.
Commun Biol ; 5(1): 1280, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443424

RESUMO

Patterns of growth throughout the lifetime of an animal reflect critical life history traits such as reproductive timing, physiology, and ecological interactions. The ancestral growth pattern for tetrapods has traditionally been described as slow-to-moderately paced, akin to modern amphibians, with fast growth and high metabolic rates considered a specialized physiological trait of amniotes. Here, we present bone histology from an ontogenetic series of the Early Carboniferous stem tetrapod Whatcheeria deltae, and document evidence of fibrolamellar bone-primary bone tissue associated with fast growth. Our data indicate that Whatcheeria juveniles grew rapidly and reached skeletal maturity quickly, allowing them to occupy a large-bodied predator niche in their paleoenvironment. This life history strategy contrasts with those described for other stem tetrapods and indicates that a diversity of growth patterns existed at the origins of tetrapod diversification. Importantly, Whatcheeria marks an unexpectedly early occurrence of fibrolamellar bone in Tetrapoda, both temporally and phylogenetically. These findings reveal that elevated juvenile growth is not limited to amniotes, but has a deep history in the tetrapod clade and may have played a previously unrecognized role in the tetrapod invasion of land.


Assuntos
Fósseis , Características de História de Vida , Animais , Osso e Ossos , Proliferação de Células , Ciclo Celular
8.
PeerJ ; 10: e14138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345484

RESUMO

We describe the skull of the Early Cretaceous (Aptian-Albian) baenid turtle Trinitichelys hiatti using micro-computed tomography to provide new insights into the cranial anatomy of basal baenids and into the evolution of paracryptodires. We show that the validity of Trinitichelys hiatti vs Arundelemys dardeni still holds true, that the most basal known baenids for which skull material is known share an intriguing combination of features that are typical of either Pleurosternidae or Baenidae, and that the carotid system of Trinitichelys hiatti is intermediate to that of pleurosternids and more advanced baenids. Our expanded phylogenetic analysis confirms the traditional placement of Arundelemys dardeni, Lakotemys australodakotensis, and Trinitichelys hiatti as basal baenids, retrieves Helochelydridae along the stem of Baenoidea, but recovers Dinochelys whitei, Glyptops ornatus, Dorsetochelys typocardium, and Uluops uluops as basal branching Paracryptodira.


Assuntos
Tartarugas , Animais , Filogenia , Tartarugas/anatomia & histologia , Osteologia , Microtomografia por Raio-X , Fósseis , Crânio/diagnóstico por imagem
9.
Sci Adv ; 8(33): eabq1898, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984885

RESUMO

Climate change-induced mass extinctions provide unique opportunities to explore the impacts of global environmental disturbances on organismal evolution. However, their influence on terrestrial ecosystems remains poorly understood. Here, we provide a new time tree for the early evolution of reptiles and their closest relatives to reconstruct how the Permian-Triassic climatic crises shaped their long-term evolutionary trajectory. By combining rates of phenotypic evolution, mode of selection, body size, and global temperature data, we reveal an intimate association between reptile evolutionary dynamics and climate change in the deep past. We show that the origin and phenotypic radiation of reptiles was not solely driven by ecological opportunity following the end-Permian extinction as previously thought but also the result of multiple adaptive responses to climatic shifts spanning 57 million years.

10.
Commun Biol ; 5(1): 195, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241764

RESUMO

Sphenodontian reptiles are an extremely old evolutionary lineage forming the closest relatives to squamates (lizards and snakes) and were globally distributed and more diverse than squamates during the first half of their evolutionary history. However, the majority of their fossils are highly fragmentary, especially within sphenodontines-the group including its single surviving species, Sphenodon punctatus (the tuatara of New Zealand)-thus severely hampering our understanding on the origins of the tuatara. Here, we present a new sphenodontian species from the Early Jurassic of North America (Arizona, USA) represented by a nearly complete articulated skeleton and dozens of upper and lower jaws forming the most complete ontogenetic series in the sphenodontian fossil record. CT-scanning provides plentitude of data that unambiguously place this new taxon as one of the earliest evolving and oldest known sphenodontines. Comparisons with Sphenodon reveal that fundamental patterns of mandibular ontogeny and skeletal architecture in Sphenodon may have originated at least ~190Mya. In combination with recent findings, our results suggest strong morphological stability and an ancient origin of the modern tuatara morphotype.


Assuntos
Fósseis , Lagartos , Animais , Evolução Biológica , Arcada Osseodentária/anatomia & histologia , Lagartos/anatomia & histologia , Filogenia
11.
iScience ; 25(1): 103578, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-37609446

RESUMO

The sprawling-parasagittal postural shift was a major transition during synapsid evolution, underpinned by reorganization of the forelimb, and considered key to mammalian ecological diversity. Determining when and how this transition occurred in the fossil record is challenging owing to limited comparative data on extant species. Here, we built forelimb musculoskeletal models of three extant taxa that bracket sprawling-parasagittal postures-tegu lizard, echidna, and opossum-and tested the relationship between three-dimensional joint mobility, muscle action, and posture. Results demonstrate clear functional variation between postural grades, with the parasagittal opossum occupying a distinct region of pose space characterized by a highly retracted and depressed shoulder joint that emphasizes versatility and humeral elevation. Applying our data to the fossil record support trends of an increasingly retracted humerus and greater elevation muscle moment arms indicative of more parasagittal postures throughout synapsid evolution.

12.
Anat Rec (Hoboken) ; 305(10): 2620-2653, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34259385

RESUMO

Thalattosuchians represent one of the several independent transitions into the marine realm among crocodylomorphs. The extent of their aquatic adaptations ranges from the semiaquatic teleosauroids, superficially resembling extant gharials, to the almost cetacean-like pelagic metriorhynchids. Understanding the suite of osteological, physiological, and sensory changes that accompanied this major transition has received increased attention, but is somewhat hindered by a dearth of complete three-dimensionally preserved crania. Here, we describe the cranial and endocranial anatomy of a well-preserved three-dimensional specimen of Macrospondylus bollensis from the Toarcian of Yorkshire, UK. The trigeminal fossa contains two similar-sized openings separated by a thin lamina of prootic, a configuration that appears unique to a subset of teleosauroids. Macrospondylus bollensis resembles other thalattosuchians in having pyramidal semicircular canals with elongate cochlear ducts, enlarged carotid canals leading to an enlarged pituitary fossa, enlarged orbital arteries, enlarged endocranial venous sinuses, reduced pharyngotympanic sinuses, and a relatively straight brain with a hemispherical cerebral expansion. We describe for the first time the olfactory region and paranasal sinuses of a teleosauroid. A relatively large olfactory region suggests greater capacity for airborne olfaction in teleosauroids than in the more aquatically adapted metriorhynchoids. Additionally, slight swellings in the olfactory region suggest the presence of small salt glands of lower secretory capacity than those of metriorhynchoids. The presence of osteological correlates for salt glands in a teleosauroid corroborates previous hypotheses that these glands originated in the common ancestor of Thalattosuchia, facilitating their rapid radiation into the marine realm.


Assuntos
Fósseis , Crânio , Animais , Encéfalo , Cetáceos/anatomia & histologia , Cabeça/anatomia & histologia , Crânio/anatomia & histologia
13.
Anat Rec (Hoboken) ; 305(10): 2838-2853, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34694063

RESUMO

The dorsoventrally flattened skull typifies extant Crocodylia perhaps more than any other anatomical feature and is generally considered an adaptation for semi-aquatic feeding. Although the evolutionary origins of caniofacial flattening have been extensively studied, the developmental origins have yet to be explored. To understand how the skull table and platyrostral snout develop, we quantified embryonic development and post-hatching growth (ontogeny) of the crocodylian skull in lateral view using geometric morphometrics. Our dataset (n = 103) includes all but one extant genus and all of the major ecomorphs, including the extremely slender-snouted Gavialis and Tomistoma. Our analysis reveals that the embryonic development of the flattened skull is remarkably similar across ecomorphs, including the presence of a conserved initial embryonic skull shape, similar to prior analysis of dorsal snout shape. Although differences during posthatching ontogeny are recovered among ecomorphs, embryonic patterns are not distinct, revealing an important shift in developmental rate near hatching. In particular, the flattened skull table is achieved by the end of embryonic development with no changes after hatching. Further, the rotation of skull roof and facial bones during development is critical for the stereotypical flatness of the crocodylian skull. Our results suggest selection on hatchling performance and constraints on embryonic skull shape may have been important in this pattern of developmental conservation. The appearance of aspects of cranial flatness among Jurassic stem crocodylians suggests key aspects of these cranial developmental patterns may have been conserved for over 200 million years.


Assuntos
Jacarés e Crocodilos , Animais , Evolução Biológica , Cabeça , Filogenia , Crânio/anatomia & histologia
14.
PeerJ ; 9: e12574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34909284

RESUMO

Skeletal muscle mass, architecture and force-generating capacity are well known to scale with body size in animals, both throughout ontogeny and across species. Investigations of limb muscle scaling in terrestrial amniotes typically focus on individual muscles within select clades, but here this question was examined at the level of the whole limb across amniotes generally. In particular, the present study explored how muscle mass, force-generating capacity (measured by physiological cross-sectional area) and internal architecture (fascicle length) scales in the fore- and hindlimbs of extant mammals, non-avian saurians ('reptiles') and bipeds (birds and humans). Sixty species spanning almost five orders of magnitude in body mass were investigated, comprising previously published architectural data and new data obtained via dissections of the opossum Didelphis virginiana and the tegu lizard Salvator merianae. Phylogenetic generalized least squares was used to determine allometric scaling slopes (exponents) and intercepts, to assess whether patterns previously reported for individual muscles or functional groups were retained at the level of the whole limb, and to test whether mammals, reptiles and bipeds followed different allometric trajectories. In general, patterns of scaling observed in individual muscles were also observed in the whole limb. Reptiles generally have proportionately lower muscle mass and force-generating capacity compared to mammals, especially at larger body size, and bipeds exhibit strong to extreme positive allometry in the distal hindlimb. Remarkably, when muscle mass was accounted for in analyses of muscle force-generating capacity, reptiles, mammals and bipeds almost ubiquitously followed a single common scaling pattern, implying that differences in whole-limb force-generating capacity are principally driven by differences in muscle mass, not internal architecture. In addition to providing a novel perspective on skeletal muscle allometry in animals, the new dataset assembled was used to generate pan-amniote statistical relationships that can be used to predict muscle mass or force-generating capacity in extinct amniotes, helping to inform future reconstructions of musculoskeletal function in the fossil record.

15.
Front Bioeng Biotechnol ; 9: 751518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820362

RESUMO

In evolutionary biomechanics, musculoskeletal computer models of extant and extinct taxa are often used to estimate joint range of motion (ROM) and muscle moment arms (MMAs), two parameters which form the basis of functional inferences. However, relatively few experimental studies have been performed to validate model outputs. Previously, we built a model of the short-beaked echidna (Tachyglossus aculeatus) forelimb using a traditional modelling workflow, and in this study we evaluate its behaviour and outputs using experimental data. The echidna is an unusual animal representing an edge-case for model validation: it uses a unique form of sprawling locomotion, and possesses a suite of derived anatomical features, in addition to other features reminiscent of extinct early relatives of mammals. Here we use diffusible iodine-based contrast-enhanced computed tomography (diceCT) alongside digital and traditional dissection to evaluate muscle attachments, modelled muscle paths, and the effects of model alterations on the MMA outputs. We use X-ray Reconstruction of Moving Morphology (XROMM) to compare ex vivo joint ROM to model estimates based on osteological limits predicted via single-axis rotation, and to calculate experimental MMAs from implanted muscles using a novel geometric method. We also add additional levels of model detail, in the form of muscle architecture, to evaluate how muscle torque might alter the inferences made from MMAs alone, as is typical in evolutionary studies. Our study identifies several key findings that can be applied to future models. 1) A light-touch approach to model building can generate reasonably accurate muscle paths, and small alterations in attachment site seem to have minimal effects on model output. 2) Simultaneous movement through multiple degrees of freedom, including rotations and translation at joints, are necessary to ensure full joint ROM is captured; however, single-axis ROM can provide a reasonable approximation of mobility depending on the modelling objectives. 3) Our geometric method of calculating MMAs is consistent with model-predicted MMAs calculated via partial velocity, and is a potentially useful tool for others to create and validate musculoskeletal models. 4) Inclusion of muscle architecture data can change some functional inferences, but in many cases reinforced conclusions based on MMA alone.

16.
Evol Dev ; 23(6): 496-512, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34813149

RESUMO

Xenarthrans (armadillos, anteaters, sloths, and their extinct relatives) are unique among mammals in displaying a distinctive specialization of the posterior trunk vertebrae-supernumerary vertebral xenarthrous articulations. This study seeks to understand how xenarthry develops through ontogeny and if it may be constrained to appear within pre-existing vertebral regions. Using three-dimensional geometric morphometrics on the neural arches of vertebrae, we explore phenotypic, allometric, and disparity patterns of the different axial morphotypes during the ontogeny of nine-banded armadillos. Shape-based regionalization analyses showed that the adult thoracolumbar column is divided into three regions according to the presence or absence of ribs and the presence or absence of xenarthrous articulations. A three-region division was retrieved in almost all specimens through development, although younger stages (e.g., fetuses, neonates) have more region boundary variability. In size-based regionalization analyses, thoracolumbar vertebrae are separated into two regions: a prediaphragmatic, prexenarthrous region, and a postdiaphragmatic xenarthrous region. We show that posterior thoracic vertebrae grow at a slower rate, while anterior thoracics and lumbars grow at a faster rate relatively, with rates decreasing anteroposteriorly in the former and increasing anteroposteriorly in the latter. We propose that different proportions between vertebrae and vertebral regions might result from differences in growth pattern and timing of ossification.


Assuntos
Tatus , Vermilingua , Animais , Mamíferos , Coluna Vertebral
17.
Nat Ecol Evol ; 5(10): 1403-1414, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426679

RESUMO

The fish-to-tetrapod transition is one of the most iconic events in vertebrate evolution, yet fundamental questions regarding the dynamics of this transition remain unresolved. Here, we use advances in Bayesian morphological clock modelling to reveal the evolutionary dynamics of early tetrapodomorphs (tetrapods and their closest fish relatives). We show that combining osteological and ichnological calibration data results in major shifts on the time of origin of all major groups of tetrapodomorphs (up to 25 million years) and that low rates of net diversification, not fossilization, explain long ghost lineages in the early tetrapodomorph fossil record. Further, our findings reveal extremely low rates of morphological change for most early tetrapodomorphs, indicating widespread stabilizing selection upon their 'fish' morphotype. This pattern was broken only by elpistostegalians (including early tetrapods), which underwent sustained high rates of morphological evolution for ~30 Myr during the deployment of the tetrapod body plan.


Assuntos
Evolução Biológica , Fósseis , Animais , Teorema de Bayes , Filogenia , Vertebrados/genética
18.
J Anat ; 239(6): 1256-1272, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34310687

RESUMO

The vertebrate transition to land is one of the most consequential, yet poorly understood periods in tetrapod evolution. Despite the importance of the water-land transition in establishing modern ecosystems, we still know very little about the life histories of the earliest tetrapods. Bone histology provides an exceptional opportunity to study the biology of early tetrapods and has the potential to reveal new insights into their life histories. Here, we examine the femoral bone histology from an ontogenetic series of Greererpeton, an early tetrapod from the Middle-Late Mississippian (early Carboniferous) of North America. Thin-sections and micro-CT data show a moderately paced rate of bone deposition with significant cortical thickening through development. An interruption to regular bone deposition, as indicated by a zone of avascular tissue and growth marks, is notable at the same late juvenile stage of development throughout our sample. This suggests that an inherent aspect to the life history of juvenile Greererpeton resulted in a temporary reduction in bone deposition. We review several possible life history correlates for this bony signature including metamorphosis, an extended juvenile phase, environmental stress, and movement (migration/dispersal) between habitats. We argue that given the anatomy of Greererpeton, it is unlikely that events related to polymorphism (metamorphosis, extended juvenile phase) can explain the bony signature observed in our sample. Furthermore, the ubiquity of this signal in our sample indicates a taxon-level rather than a population-level trait, which is expected for an environmental stress. We conclude that movement via dispersal represents a likely correlate, as such events are a common life history strategy of aquatically bound vertebrates.


Assuntos
Evolução Biológica , Fósseis , Animais , Osso e Ossos , Ecossistema , Vertebrados
19.
Proc Biol Sci ; 288(1947): 20210069, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33757349

RESUMO

Understanding the origin, expansion and loss of biodiversity is fundamental to evolutionary biology. The approximately 26 living species of crocodylomorphs (crocodiles, caimans, alligators and gharials) represent just a snapshot of the group's rich 230-million-year history, whereas the fossil record reveals a hidden past of great diversity and innovation, including ocean and land-dwelling forms, herbivores, omnivores and apex predators. In this macroevolutionary study of skull and jaw shape disparity, we show that crocodylomorph ecomorphological variation peaked in the Cretaceous, before declining in the Cenozoic, and the rise and fall of disparity was associated with great heterogeneity in evolutionary rates. Taxonomically diverse and ecologically divergent Mesozoic crocodylomorphs, like marine thalattosuchians and terrestrial notosuchians, rapidly evolved novel skull and jaw morphologies to fill specialized adaptive zones. Disparity in semi-aquatic predatory crocodylians, the only living crocodylomorph representatives, accumulated steadily, and they evolved more slowly for most of the last 80 million years, but despite their conservatism there is no evidence for long-term evolutionary stagnation. These complex evolutionary dynamics reflect ecological opportunities, that were readily exploited by some Mesozoic crocodylomorphs but more limited in Cenozoic crocodylians.


Assuntos
Jacarés e Crocodilos , Evolução Biológica , Animais , Biodiversidade , Fósseis , Filogenia , Crânio/anatomia & histologia
20.
Curr Biol ; 31(9): 1883-1892.e7, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33657406

RESUMO

The evolution of mammals from their extinct forerunners, the non-mammalian synapsids, is one of the most iconic locomotor transitions in the vertebrate fossil record. In the limb skeleton, the synapsid-mammal transition is traditionally characterized by a shift from a sprawling limb posture, resembling that of extant reptiles and amphibians, to more adducted limbs, as seen in modern-day mammals. Based on proposed postural similarities between early synapsids and extant reptiles, this change is thought to be accompanied by a shift from ancestral reptile-like lateral bending to mammal-like sagittal bending of the vertebral column. To test this "lateral-to-sagittal" evolutionary paradigm, we used combinatorial optimization to produce functionally informed adaptive landscapes and determined the functional trade-offs associated with evolutionary changes in vertebral morphology. We show that the synapsid adaptive landscape is different from both extant reptiles and mammals, casting doubt on the reptilian model for early synapsid axial function, or indeed for the ancestral condition of amniotes more broadly. Further, the synapsid-mammal transition is characterized by not only increasing sagittal bending in the posterior column but also high stiffness and increasing axial twisting in the anterior column. Therefore, we refute the simplistic lateral-to-sagittal hypothesis and instead suggest the synapsid-mammal locomotor transition involved a more complex suite of functional changes linked to increasing regionalization of the backbone. These results highlight the importance of fossil taxa for understanding major evolutionary transitions.


Assuntos
Evolução Biológica , Mamíferos , Animais , Fósseis , Répteis/anatomia & histologia , Coluna Vertebral/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...