Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(23): 20300-8, 2001 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-11278556

RESUMO

An Arabidopsis thaliana gene (AtLPP1) was isolated on the basis that it was transiently induced by ionizing radiation. The putative AtLPP1 gene product showed homology to the yeast and mammalian lipid phosphate phosphatase enzymes and possessed a phosphatase signature sequence motif. Heterologous expression and biochemical characterization of the AtLPP1 gene in yeast showed that it encoded an enzyme (AtLpp1p) that exhibited both diacylglycerol pyrophosphate phosphatase and phosphatidate phosphatase activities. Kinetic analysis indicated that diacylglycerol pyrophosphate was the preferred substrate for AtLpp1p in vitro. A second Arabidopsis gene (AtLPP2) was identified based on sequence homology to AtLPP1 that was also heterologously expressed in yeast. The AtLpp2p enzyme also utilized diacylglycerol pyrophosphate and phosphatidate but with no preference for either substrate. The AtLpp1p and AtLpp2p enzymes showed differences in their apparent affinities for diacylglycerol pyrophosphate and phosphatidate as well as other enzymological properties. Northern blot analyses showed that the AtLPP1 gene was preferentially expressed in leaves and roots, whereas the AtLPP2 gene was expressed in all tissues examined. AtLPP1, but not AtLPP2, was regulated in response to various stress conditions. The AtLPP1 gene was transiently induced by genotoxic stress (gamma ray or UV-B) and elicitor treatments with mastoparan and harpin. The regulation of the AtLPP1 gene in response to stress was consistent with the hypothesis that its encoded lipid phosphate phosphatase enzyme may attenuate the signaling functions of phosphatidate and/or diacylglycerol pyrophosphate that form in response to stress in plants.


Assuntos
Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fosfatidato Fosfatase/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Sequência de Bases , Primers do DNA , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Dados de Sequência Molecular , Fosfatidato Fosfatase/química , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radiação Ionizante , Homologia de Sequência de Aminoácidos
2.
Radiat Res ; 154(4): 355-64, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11023598

RESUMO

Screening for mRNAs that accumulate after DNA damage induced by ionizing radiation, we have isolated a 2.0-kb cDNA coding for a new Arabidopsis PEST-box protein named AtGR1 (A. thaliana gamma response 1) with an expression profile similar to that observed for several plant cell cycle-related proteins. Using an anti-AtGR1 antibody, we have shown that the AtGR1 protein is expressed at basal levels in mitotically dividing cells (meristematic tissues and organ primordia) and at a strongly enhanced level in endoreduplicating cells (stipules, trichomes). Using transgenic Arabidopsis plants that express the GUS reporter gene under the control of the AtGR1 promoter, we have demonstrated that the observed AtGR1 protein distribution is due to the promoter activity. Our results suggest that basal AtGR1 levels are associated with progression through mitosis, whereas elevated intracellular levels of AtGR1 seem to induce changes between the S and M phases of the cell cycle that trigger somatic cells to enter the endoreduplication cycle. Ionizing radiation-induced rapid and dose-dependent accumulation of AtGR1 mRNA in cell cultures and plant tissues leads to tissue-specific accumulation of AtGR1 protein, best observed in ovules, which never undergo an endoreduplication cycle. It therefore appears that the radiation-induced transient AtGR1 accumulation reflects DNA damage-dependent transient cell cycle arrest before mitosis, which is necessary to accomplish DNA repair prior to chromosome segregation and cytokinesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Raios gama , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/biossíntese , Clonagem Molecular , Dano ao DNA , Reparo do DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , DNA de Plantas/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Reporter , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Estresse Oxidativo , Estruturas Vegetais/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA de Plantas/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA