Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (206)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38647320

RESUMO

Fuel treatments and other forest restoration thinning practices aim to reduce wildfire risk while building forest resilience to drought, insects, and diseases and increasing aboveground carbon (C) sequestration. However, fuel treatments generate large amounts of unmerchantable woody biomass residues that are often burned in open piles, releasing significant quantities of greenhouse gases and particulates, and potentially damaging the soil beneath the pile. Air curtain burners offer a solution to mitigate these issues, helping to reduce smoke and particulates from burning operations, more fully burn biomass residues compared to pile burning, and eliminate the direct and intense fire contact that can harm soil beneath the slash pile. In an air curtain burner, burning takes place in a controlled environment. Smoke is contained and recirculated by the air curtain, and therefore burning can be conducted under a variety of climatic conditions (e.g., wind, rain, snow), lengthening the burning season for disposal of slash material. The mobile pyrolysis unit that continuously creates biochar was specifically designed to dispose of residual woody biomass at log landings, green wood at landfills, or salvaged logged materials and create biochar in the process. This high-carbon biochar output can be used to enhance soil resilience by improving its chemical, physical, and biological properties and has potential applications in remediating contaminated soils, including those at abandoned mine sites. Here, we describe the general use of this equipment, appropriate siting, loading methods, quenching requirements, and lessons learned about operating this new technology.


Assuntos
Carvão Vegetal , Madeira , Madeira/química , Carvão Vegetal/química , Pirólise , Agricultura Florestal/métodos
2.
Sci Rep ; 12(1): 22438, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36575205

RESUMO

Ecological theory predicts a pulse disturbance results in loss of soil organic carbon and short-term respiration losses that exceed recovery of productivity in many ecosystems. However, fundamental uncertainties remain in our understanding of ecosystem recovery where spatiotemporal variation in structure and function are not adequately represented in conceptual models. Here we show that wildfire in sagebrush shrublands results in multiscale responses that vary with ecosystem properties, landscape position, and their interactions. Consistent with ecological theory, soil pH increased and soil organic carbon (SOC) decreased following fire. In contrast, SOC responses were slope aspect and shrub-microsite dependent, with a larger proportional decrease under previous shrubs on north-facing aspects compared to south-facing ones. In addition, respiratory losses from burned aspects were not significantly different than losses from unburned aspects. We also documented the novel formation of soil inorganic carbon (SIC) with wildfire that differed significantly with aspect and microsite scale. Whereas pH and SIC recovered within 37 months post-fire, SOC stocks remained reduced, especially on north-facing aspects. Spatially, SIC formation was paired with reduced respiration losses, presumably lower partial pressure of carbon dioxide (pCO2), and increased calcium availability, consistent with geochemical models of carbonate formation. Our findings highlight the formation of SIC after fire as a novel short-term sink of carbon in non-forested shrubland ecosystems. Resiliency in sagebrush shrublands may be more complex and integrated across ecosystem to landscape scales than predicted based on current theory.


Assuntos
Artemisia , Incêndios Florestais , Ecossistema , Solo , Carbono
3.
Sci Rep ; 12(1): 10824, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752734

RESUMO

From hillslope to small catchment scales (< 50 km2), soil carbon management and mitigation policies rely on estimates and projections of soil organic carbon (SOC) stocks. Here we apply a process-based modeling approach that parameterizes the MIcrobial-MIneral Carbon Stabilization (MIMICS) model with SOC measurements and remotely sensed environmental data from the Reynolds Creek Experimental Watershed in SW Idaho, USA. Calibrating model parameters reduced error between simulated and observed SOC stocks by 25%, relative to the initial parameter estimates and better captured local gradients in climate and productivity. The calibrated parameter ensemble was used to produce spatially continuous, high-resolution (10 m2) estimates of stocks and associated uncertainties of litter, microbial biomass, particulate, and protected SOC pools across the complex landscape. Subsequent projections of SOC response to idealized environmental disturbances illustrate the spatial complexity of potential SOC vulnerabilities across the watershed. Parametric uncertainty generated physicochemically protected soil C stocks that varied by a mean factor of 4.4 × across individual locations in the watershed and a - 14.9 to + 20.4% range in potential SOC stock response to idealized disturbances, illustrating the need for additional measurements of soil carbon fractions and their turnover time to improve confidence in the MIMICS simulations of SOC dynamics.


Assuntos
Carbono , Solo , Biomassa , Clima
4.
J Vis Exp ; (190)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36591979

RESUMO

Soil organic matter (SOM) is a complicated mixture of different compounds that span the range from free, partially degraded plant components to more microbially altered compounds held in the soil aggregates to highly processed microbial by-products with strong associations with reactive soil minerals. Soil scientists have struggled to find ways to separate soil into fractions that are easily measurable and useful for soil carbon (C) modeling. Fractionating soil based on density is increasingly being used, and it is easy to perform and yields C pools based on the degree of association between the SOM and different minerals; thus, soil density fractionation can help to characterize the SOM and identify SOM stabilization mechanisms. However, the reported soil density fractionation protocols vary significantly, making the results from different studies and ecosystems hard to compare. Here, we describe a robust density fractionation procedure that separates particulate and mineral-associated organic matter and explain the benefits and drawbacks of separating soil into two, three, or more density fractions. Such fractions often differ in their chemical and mineral composition, turnover time, and degree of microbial processing, as well as the degree of mineral stabilization.


Assuntos
Ecossistema , Solo , Solo/química , Carbono/química , Minerais/química , Fracionamento Químico/métodos
5.
Scientifica (Cairo) ; 2017: 4758316, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28321358

RESUMO

Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha-1 of wood mulch, 20 t ha-1 of biochar, and the combination of the two amendments with untreated, burned soils. We also conducted a greenhouse trial to examine how biochar influenced soil nutrient and water content under two wetting regimes. The effects of wood mulch on plant-available soil N and water content were significant and seasonally consistent during the three-year field study. Biochar applied alone had few effects under field conditions, but significantly increased soil pH, Ca, P, and water in the greenhouse. The mulched biochar treatment had the greatest effects on soil N and water availability and increased cover of the most abundant native plant. We found that rehabilitation treatments consisting of forest residue-based products have potential to enhance soil N and water dynamics and plant recovery following severe wildfire and may be justified where erosion risk or water supply protection are crucial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...