Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Aging ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689133

RESUMO

By 2030, individuals 65 years of age or older will make up approximately 20% of the world's population1. Older individuals are at the highest risk for mortality from infections, largely due to the pro-inflammatory, dysfunctional immune response, which is collectively known as immunosenescence2. During aging, CD8+ T cells acquire an exhausted phenotype, including increased expression of inhibitory receptors, such as programmed cell death 1 (PD1), a decline in effector function and elevated expression of inflammatory factors3-7. PD1 reduces T cell receptor activity via SHP2-dependent dephosphorylation of multiple pathways; accordingly, inhibiting PD1 activity through monoclonal antibodies increases CD8+ T cell effector response in young mice8-11. Attempts to improve CD8+ T cell responses by blocking inhibitory receptors are attractive; however, they can lead to adverse immune events due to overamplification of T cell receptor signaling and T cell activation12,13. Here we investigated the effect of monoclonal anti-PD1 immunotherapy during normal microbial experience, otherwise known as exposure to dirty mice, to determine whether it either improves exhausted CD8+ T cell responses in old mice or leads to a heightened inflammatory response and increased mortality.

2.
mSphere ; 9(2): e0065423, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38286428

RESUMO

Specific pathogen-free (SPF) laboratory mice dominate preclinical studies for immunology and vaccinology. Unfortunately, SPF mice often fail to accurately model human responses to vaccination and other immunological perturbations. Several groups have taken different approaches to introduce additional microbial experience to SPF mice to better model human immune experience. How these different models compare is unknown. Here, we directly compare three models: housing SPF mice in a microbe-rich barn-like environment (feralizing), adding wild-caught mice to the barn-like environment (fer-cohoused), or cohousing SPF mice with pet store mice in a barrier facility (pet-cohoused); the two latter representing different murine sources of microbial transmission. Pet-cohousing mice resulted in the greatest microbial exposure. Feralizing alone did not result in the transmission of any pathogens tested, while fer-cohousing resulted in the transmission of several picornaviruses. Murine astrovirus 2, the most common pathogen from pet store mice, was absent from the other two model systems. Previously, we had shown that pet-cohousing reduced the antibody response to vaccination compared with SPF mice. This was not recapitulated in either the feralized or fer-cohoused mice. These data indicate that not all dirty mouse models are equivalent in either microbial experience or immune responses to vaccination. These disparities suggest that more cross model comparisons are needed but also represent opportunities to uncover microbe combination-specific phenotypes and develop more refined experimental models. Given the breadth of microbes encountered by humans across the globe, multiple model systems may be needed to accurately recapitulate heterogenous human immune responses.IMPORTANCEAnimal models are an essential tool for evaluating clinical interventions. Unfortunately, they can often fail to accurately predict outcomes when translated into humans. This failure is due in part to a lack of natural infections experienced by most laboratory animals. To improve the mouse model, we and others have exposed laboratory mice to microbes they would experience in the wild. Although these models have been growing in popularity, these different models have not been specifically compared. Here, we directly compare how three different models of microbial experience impact the immune response to influenza vaccination. We find that these models are not the same and that the degree of microbial exposure affects the magnitude of the response to vaccination. These results provide an opportunity for the field to continue comparing and contrasting these systems to determine which models best recapitulate different aspects of the human condition.


Assuntos
Imunidade , Vacinação , Animais , Camundongos , Humanos , Modelos Animais de Doenças , Organismos Livres de Patógenos Específicos
3.
Cell Rep ; 42(11)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38111515

RESUMO

Uropathogenic E. coli (UPEC) is a primary organism responsible for urinary tract infections and a common cause of sepsis. Microbially experienced laboratory mice, generated by cohousing with pet store mice, exhibit increased morbidity and mortality to polymicrobial sepsis or lipopolysaccharide challenge. By contrast, cohoused mice display significant resistance, compared with specific pathogen-free mice, to a monomicrobial sepsis model using UPEC. CD115+ monocytes mediate protection in the cohoused mice, as depletion of these cells leads to increased mortality and UPEC pathogen burden. Further study of the cohoused mice reveals increased TNF-α production by monocytes, a skewing toward Ly6ChiCD115+ "classical" monocytes, and enhanced egress of Ly6ChiCD115+ monocytes from the bone marrow. Analysis of cohoused bone marrow also finds increased frequency and number of myeloid multipotent progenitor cells. These results show that a history of microbial exposure impacts innate immunity in mice, which can have important implications for the preclinical study of sepsis.


Assuntos
Infecções por Escherichia coli , Sepse , Infecções Urinárias , Escherichia coli Uropatogênica , Camundongos , Animais , Monócitos , Escherichia coli , Imunidade Inata , Receptores Proteína Tirosina Quinases
4.
J Immunol ; 210(11): 1740-1751, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074206

RESUMO

Microbial experience fundamentally shapes immunity, particularly during the perinatal period when the immune system is underdeveloped, and novel microbial encounters are common. Most animal models are raised in specific pathogen-free (SPF) conditions with relatively uniform microbial communities. How SPF housing conditions alter early-life immune development relative to natural microbial exposure (NME) has not been thoroughly investigated. In this article, we compare immune development in SPF-raised mice with mice born from immunologically experienced mothers in microbially diverse environments. NME induced broad immune cell expansion, including naive cells, suggesting mechanisms besides activation-induced proliferation contribute to the increase in immune cell numbers. We found NME conditions also expanded immune cell progenitor cell populations in the bone marrow, suggesting microbial experience enhances immune development at the earliest stages of immune cell differentiation. Multiple immune functions characteristically impaired in infants were also enhanced by NME, including T cell memory and Th1 polarization, B cell class switching and Ab production, proinflammatory cytokine expression, and bacterial clearance after Listeria monocytogenes challenge. Collectively, our studies reveal numerous impairments in immune development in SPF conditions relative to natural immune development.


Assuntos
Citocinas , Listeria monocytogenes , Animais , Camundongos , Citocinas/metabolismo , Medula Óssea/metabolismo , Linfócitos B , Células-Tronco/metabolismo , Camundongos Endogâmicos C57BL
5.
J Exp Med ; 220(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37097449

RESUMO

The oral mucosa is a frontline for microbial exposure and juxtaposes several unique tissues and mechanical structures. Based on parabiotic surgery of mice receiving systemic viral infections or co-housing with microbially diverse pet shop mice, we report that the oral mucosa harbors CD8+ CD103+ resident memory T cells (TRM), which locally survey tissues without recirculating. Oral antigen re-encounter during the effector phase of immune responses potentiated TRM establishment within tongue, gums, palate, and cheek. Upon reactivation, oral TRM triggered changes in somatosensory and innate immune gene expression. We developed in vivo methods for depleting CD103+ TRM while sparing CD103neg TRM and recirculating cells. This revealed that CD103+ TRM were responsible for inducing local gene expression changes. Oral TRM putatively protected against local viral infection. This study provides methods for generating, assessing, and in vivo depleting oral TRM, documents their distribution throughout the oral mucosa, and provides evidence that TRM confer protection and trigger responses in oral physiology and innate immunity.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Animais , Camundongos , Antígenos/metabolismo , Memória Imunológica , Mucosa Bucal
6.
J Neuroinflammation ; 19(1): 295, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494807

RESUMO

BACKGROUND: Characterizing immune cells and conditions that govern their recruitment and function in autoimmune diseases of the nervous system or in neurodegenerative processes is an area of active investigation. We sought to analyze the origin of antigen presenting cells associated with the induction of retinal autoimmunity using a system that relies on spontaneous autoimmunity, thus avoiding uncertainties associated with immunization with adjuvants at remotes sites or adoptive transfer of in vitro activated T cells. METHODS: R161H mice (B10.RIII background), which spontaneously and rapidly develop severe spontaneous autoimmune uveoretinitis (SAU), were crossed to CD11cDTR/GFP mice (B6/J) allowing us to track the recruitment to and/or expansion within the retina of activated, antigen presenting cells (GFPhi cells) in R161H+/- × CD11cDTR/GFP F1 mice relative to the course of SAU. Parabiosis between R161H+/- × CD11cDTR/GFP F1 mice and B10.RIII × B6/J F1 (wild-type recipient) mice was done to explore the origin and phenotype of antigen presenting cells crucial for the induction of autoimmunity. Analysis was done by retinal imaging, flow cytometry, and histology. RESULTS: Onset of SAU in R161H+/- × CD11cDTR/GFP F1 mice was delayed relative to B10.RIII-R161H+/- mice revealing a disease prophase prior to frank autoimmunity that was characterized by expansion of GFPhi cells within the retina prior to any clinical or histological evidence of autoimmunity. Parabiosis between mice carrying the R161H and CD11cDTR/GFP transgenes and transgene negative recipients showed that recruitment of circulating GFPhi cells into retinas was highly correlative with the occurrence of SAU. CONCLUSIONS: Our results here contrast with our previous findings showing that retinal antigen presenting cells expanding in response to either sterile mechanical injury or neurodegeneration were derived from myeloid cells within the retina or optic nerve, thus highlighting a unique facet of retinal autoimmunity.


Assuntos
Doenças Autoimunes , Retina , Camundongos , Animais , Camundongos Transgênicos , Modelos Animais de Doenças , Retina/patologia , Células Apresentadoras de Antígenos , Parabiose , Camundongos Endogâmicos C57BL
7.
J Immunol ; 209(11): 2149-2159, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426978

RESUMO

Successful vaccination strategies offer the potential for lifelong immunity against infectious diseases and cancer. There has been increased attention regarding the limited translation of some preclinical findings generated using specific pathogen-free (SPF) laboratory mice to humans. One potential reason for the difference between preclinical and clinical findings lies in maturation status of the immune system at the time of challenge. In this study, we used a "dirty" mouse model, where SPF laboratory mice were cohoused (CoH) with pet store mice to permit microbe transfer and immune system maturation, to investigate the priming of a naive T cell response after vaccination with a peptide subunit mixed with polyinosinic-polycytidylic acid and agonistic anti-CD40 mAb. Although this vaccination platform induced robust antitumor immunity in SPF mice, it failed to do so in microbially experienced CoH mice. Subsequent investigation revealed that despite similar numbers of Ag-specific naive CD4 and CD8 T cell precursors, the expansion, differentiation, and recall responses of these CD4 and CD8 T cell populations in CoH mice were significantly reduced compared with SPF mice after vaccination. Evaluation of the dendritic cell compartment revealed reduced IL-27p28 expression by XCR1+ dendritic cells from CoH mice after vaccination, correlating with reduced T cell expansion. Importantly, administration of recombinant IL-27:EBI3 complex to CoH mice shortly after vaccination significantly boosted Ag-specific CD8 and CD4 T cell expansion, further implicating the defect to be T cell extrinsic. Collectively, our data show the potential limitation of exclusive use of SPF mice when testing vaccine efficacy.


Assuntos
Interleucina-27 , Humanos , Camundongos , Animais , Interleucina-27/metabolismo , Linfócitos T CD8-Positivos , Antígenos CD40 , Diferenciação Celular , Células Dendríticas
8.
Nat Immunol ; 23(12): 1703-1713, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36411381

RESUMO

Lung group 2 innate lymphoid cells (ILC2s) control the nature of immune responses to airway allergens. Some microbial products, including those that stimulate interferons, block ILC2 activation, but whether this occurs after natural infections or causes durable ILC2 inhibition is unclear. In the present study, we cohoused laboratory and pet store mice as a model of physiological microbial exposure. Laboratory mice cohoused for 2 weeks had impaired ILC2 responses and reduced lung eosinophilia to intranasal allergens, whereas these responses were restored in mice cohoused for ≥2 months. ILC2 inhibition at 2 weeks correlated with increased interferon receptor signaling, which waned by 2 months of cohousing. Reinduction of interferons in 2-month cohoused mice blocked ILC2 activation. These findings suggest that ILC2s respond dynamically to environmental cues and that microbial exposures do not control long-term desensitization of innate type 2 responses to allergens.


Assuntos
Alérgenos , Imunidade Inata , Camundongos , Animais , Linfócitos , Citocinas , Pulmão , Interferons , Interleucina-33
9.
J Immunol ; 209(9): 1691-1702, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122933

RESUMO

Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and a natural mouse pathogen. LCMV-Armstrong, an acutely resolved strain, and LCMV-clone 13, a mutant that establishes chronic infection, have provided contrasting infection models that continue to inform the fundamental biology of T cell differentiation, regulation of exhaustion, and response to checkpoint blockade. In this study, we report the isolation and characterization of LCMV-Minnesota (LCMV-MN), which was naturally transmitted to laboratory mice upon cohousing with pet shop mice and shares 80-95% amino acid homology with previously characterized LCMV strains. Infection of laboratory mice with purified LCMV-MN resulted in viral persistence that was intermediate between LCMV-Armstrong and -clone 13, with widely disseminated viral replication and viremia that was controlled within 15-30 d, unless CD4 T cells were depleted prior to infection. LCMV-MN-responding CD8+ T cells biased differentiation toward the recently described programmed death-1 (PD-1)+CXCR5+Tim-3lo stemlike CD8+ T cell population (also referred to as progenitor exhausted T cells) that effectuates responses to PD-1 blockade checkpoint inhibition, a therapy that rejuvenates responses against chronic infections and cancer. This subset resembled previously characterized PD-1+TCF1+ stemlike CD8+ T cells by transcriptional, phenotypic, and functional assays, yet was atypically abundant. LCMV-MN may provide a tool to better understand the breadth of immune responses in different settings of chronic Ag stimulation as well as the ontogeny of progenitor exhausted T cells and the regulation of responsiveness to PD-1 blockade.


Assuntos
Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Aminoácidos/metabolismo , Animais , Linfócitos T CD8-Positivos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Viremia/metabolismo
10.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958350

RESUMO

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats-which harbor natural rodent pathogens-are cohoused with laboratory mice. This "dirty" mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Viroses/etiologia , Viroses/transmissão , Doenças dos Animais/transmissão , Doenças dos Animais/virologia , Animais , Biomarcadores , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Camundongos , Camundongos Knockout , Interações Microbianas , Roedores , Viroses/metabolismo
11.
Cell Host Microbe ; 29(12): 1815-1827.e6, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34731647

RESUMO

Laboratory mice comprise an expeditious model for preclinical vaccine testing; however, vaccine immunogenicity in these models often inadequately translates to humans. Reconstituting physiologic microbial experience to specific pathogen-free (SPF) mice induces durable immunological changes that better recapitulate human immunity. We examined whether mice with diverse microbial experience better model human responses post vaccination. We co-housed laboratory mice with pet-store mice, which have varied microbial exposures, and then assessed immune responses to influenza vaccines. Human transcriptional responses to influenza vaccination are better recapitulated in co-housed mice. Although SPF and co-housed mice were comparably susceptible to acute influenza infection, vaccine-induced humoral responses were dampened in co-housed mice, resulting in poor control upon challenge. Additionally, protective heterosubtypic T cell immunity was compromised in co-housed mice. Because SPF mice exaggerated humoral and T cell protection upon influenza vaccination, reconstituting microbial experience in laboratory mice through co-housing may better inform preclinical vaccine testing.


Assuntos
Imunogenicidade da Vacina , Vacinas contra Influenza/imunologia , Animais , Feminino , Humanos , Imunidade Humoral , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinação
12.
Science ; 373(6552)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34103349

RESUMO

The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2-related mouse ß-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.


Assuntos
Envelhecimento , Senescência Celular/efeitos dos fármacos , Infecções por Coronavirus/mortalidade , Flavonóis/uso terapêutico , Moléculas com Motivos Associados a Patógenos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , COVID-19/imunologia , COVID-19/mortalidade , Linhagem Celular , Infecções por Coronavirus/imunologia , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Feminino , Flavonóis/farmacologia , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/imunologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , Organismos Livres de Patógenos Específicos , Tratamento Farmacológico da COVID-19
13.
Nature ; 592(7854): 457-462, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731934

RESUMO

In metazoans, specific tasks are relegated to dedicated organs that are established early in development, occupy discrete locations and typically remain fixed in size. The adult immune system arises from a centralized haematopoietic niche that maintains self-renewing potential1,2, and-upon maturation-becomes distributed throughout the body to monitor environmental perturbations, regulate tissue homeostasis and mediate organism-wide defence. Here we examine how immunity is integrated within adult mouse tissues, and address issues of durability, expansibility and contributions to organ cellularity. Focusing on antiviral T cell immunity, we observed durable maintenance of resident memory T cells up to 450 days after infection. Once established, resident T cells did not require the T cell receptor for survival or retention of a poised, effector-like state. Although resident memory indefinitely dominated most mucosal organs, surgical separation of parabiotic mice revealed a tissue-resident provenance for blood-borne effector memory T cells, and circulating memory slowly made substantial contributions to tissue immunity in some organs. After serial immunizations or cohousing with pet-shop mice, we found that in most tissues, tissue pliancy (the capacity of tissues to vary their proportion of immune cells) enables the accretion of tissue-resident memory, without axiomatic erosion of pre-existing antiviral T cell immunity. Extending these findings, we demonstrate that tissue residence and organ pliancy are generalizable aspects that underlie homeostasis of innate and adaptive immunity. The immune system grows commensurate with microbial experience, reaching up to 25% of visceral organ cellularity. Regardless of the location, many populations of white blood cells adopted a tissue-residency program within nonlymphoid organs. Thus, residence-rather than renewal or recirculation-typifies nonlymphoid immune surveillance, and organs serve as pliant storage reservoirs that can accommodate continuous expansion of the cellular immune system throughout life. Although haematopoiesis restores some elements of the immune system, nonlymphoid organs sustain an accrual of durable tissue-autonomous cellular immunity that results in progressive decentralization of organismal immune homeostasis.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Microambiente Celular , Homeostase , Memória Imunológica , Vigilância Imunológica , Imunidade Adaptativa , Animais , Feminino , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/imunologia
14.
Curr Protoc ; 1(2): e53, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33621444

RESUMO

Laboratory strains of mice are typically housed in specific pathogen-free facilities to minimize exposure to microbes. This method encourages uniformity in responses to experimentally induced parameters and reduces loss of animals, allowing for the survival and study of immunodeficient mice. However, the restrictions also limit physiologic relevance to humans, who are exposed to numerous microbes from birth. Recent evidence from several groups has demonstrated that exposure of laboratory mice to commensal and pathogenic microbes normally found in wild or pet store mice can dramatically impact the cellular makeup and function of the immune system. This article outlines procedures for exposing laboratory strains of mice to the diverse array of microbes typically found in pet store mice. Suggested methods for characterization of the immune system following this exposure are also described. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Cohousing laboratory strains of mice with pet store mice Support Protocol: Antibody staining of circulating immune cells and analysis by flow cytometry Basic Protocol 2: Exposure of laboratory strains of mice to fomite bedding.


Assuntos
Sistema Imunitário , Animais , Camundongos , Organismos Livres de Patógenos Específicos
15.
J Immunol ; 205(1): 3-11, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32571979

RESUMO

The mouse (Mus musculus) is the dominant organism used to investigate the mechanisms behind complex immunological responses because of their genetic similarity to humans and our ability to manipulate those genetics to understand downstream function. Indeed, our knowledge of immune system development, response to infection, and ways to therapeutically manipulate the immune response to combat disease were, in large part, delineated in the mouse. Despite the power of mouse-based immunology research, the translational efficacy of many new therapies from mouse to human is far from ideal. Recent data have highlighted how the naive, neonate-like immune system of specific pathogen-free mice differs dramatically in composition and function to mice living under barrier-free conditions (i.e., "dirty" mice). In this review, we discuss major findings to date and challenges faced when using dirty mice and specific areas of immunology research that may benefit from using animals with robust and varied microbial exposure.


Assuntos
Imunidade/fisiologia , Camundongos/imunologia , Microbiota/imunologia , Modelos Animais , Pesquisa Translacional Biomédica/métodos , Animais , Camundongos/microbiologia , Organismos Livres de Patógenos Específicos/imunologia
16.
Cell Rep ; 28(7): 1729-1743.e5, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412243

RESUMO

Microbial exposures can define an individual's basal immune state. Cohousing specific pathogen-free (SPF) mice with pet store mice, which harbor numerous infectious microbes, results in global changes to the immune system, including increased circulating phagocytes and elevated inflammatory cytokines. How these differences in the basal immune state influence the acute response to systemic infection is unclear. Cohoused mice exhibit enhanced protection from virulent Listeria monocytogenes (LM) infection, but increased morbidity and mortality to polymicrobial sepsis. Cohoused mice have more TLR2+ and TLR4+ phagocytes, enhancing recognition of microbes through pattern-recognition receptors. However, the response to a TLR2 ligand is muted in cohoused mice, whereas the response to a TLR4 ligand is greatly amplified, suggesting a basis for the distinct response to Listeria monocytogenes and sepsis. Our data illustrate how microbial exposure can enhance the immune response to unrelated challenges but also increase the risk of immunopathology from a severe cytokine storm.


Assuntos
Citocinas/metabolismo , Imunidade Inata/imunologia , Inflamação/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Feminino , Inflamação/metabolismo , Inflamação/patologia , Listeriose/metabolismo , Listeriose/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/imunologia , Fagócitos/metabolismo , Fagócitos/patologia , Sepse/imunologia , Sepse/metabolismo , Sepse/patologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
17.
Cell Rep ; 26(11): 2859-2867.e4, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865878

RESUMO

The migratory capacity of adaptive CD8αß T cells dictates their ability to locate target cells and exert cytotoxicity, which is the basis of immune surveillance for the containment of microbes and disease. The small intestine (SI) is the largest mucosal surface and is a primary site of pathogen entrance. Using two-photon laser scanning microscopy, we found that motility of antigen (Ag)-specific CD8αß T cells in the SI is dynamic and varies with the environmental milieu. Pathogen-specific CD8αß T cell movement differed throughout infection, becoming locally confined at memory. Motility was not dependent on CD103 but was influenced by micro-anatomical locations within the SI and by inflammation. CD8 T cells responding to self-protein were initially affected by the presence of self-Ag, but this was altered after complete tolerance induction. These studies identify multiple factors that affect CD8αß T cell movement in the intestinal mucosa and show the adaptability of CD8αß T cell motility.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Movimento Celular , Intestino Delgado/citologia , Animais , Linfócitos T CD8-Positivos/imunologia , Inflamação , Intestino Delgado/imunologia , Intestino Delgado/patologia , Camundongos , Camundongos Endogâmicos C57BL
18.
Acta Neuropathol Commun ; 6(1): 66, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037353

RESUMO

Using mice expressing green fluorescent protein (GFP) from a transgenic CD11c promoter we found that a controlled optic nerve crush (ONC) injury attracted GFPhi retinal myeloid cells to the dying retinal ganglion cells and their axons. However, the origin of these retinal myeloid cells was uncertain. In this study we use transgenic mice in conjunction with ONC, partial and full optic nerve transection (ONT), and parabiosis to determine the origin of injury induced retinal myeloid cells. Analysis of parabiotic mice and fate mapping showed that responding retinal myeloid cells were not derived from circulating macrophages and that GFPhi myeloid cells could be derived from GFPlo microglia. Comparison of optic nerve to retina following an ONC showed a much greater concentration of GFPhi cells and GFPlo microglia in the optic nerve. Optic nerve injury also induced Ki67+ cells in the optic nerve but not in the retina. Comparison of the retinal myeloid cell response after full versus partial ONT revealed fewer GFPhi cells and GFPlo microglia in the retina following a full ONT despite it being a more severe injury, suggesting that full transection of the optic nerve can block the migration of responding myeloid cells to the retina. Our results suggest that the optic nerve can be a reservoir for activated microglia and other retinal myeloid cells in the retina following optic nerve injury.


Assuntos
Neuroglia/patologia , Traumatismos do Nervo Óptico/patologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Retina/patologia , Animais , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Antígeno Ki-67/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Células Mieloides , Quiasma Óptico/patologia , Parabiose , Retina/metabolismo , Estilbamidinas/metabolismo , Fatores de Tempo
19.
Immunity ; 48(2): 327-338.e5, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466758

RESUMO

Immunosurveillance of secondary lymphoid organs (SLO) is performed by central memory T cells that recirculate through blood. Resident memory T (Trm) cells remain parked in nonlymphoid tissues and often stably express CD69. We recently identified Trm cells within SLO, but the origin and phenotype of these cells remains unclear. Using parabiosis of "dirty" mice, we found that CD69 expression is insufficient to infer stable residence of SLO Trm cells. Restimulation of nonlymphoid memory CD8+ T cells within the skin or mucosa resulted in a substantial increase in bona fide Trm cells specifically within draining lymph nodes. SLO Trm cells derived from emigrants from nonlymphoid tissues and shared some transcriptional and phenotypic signatures associated with nonlymphoid Trm cells. These data indicate that nonlymphoid cells can give rise to SLO Trm cells and suggest vaccination strategies by which memory CD8+ T cell immunosurveillance can be regionalized to specific lymph nodes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Linfonodos/imunologia , Animais , Antígenos CD/análise , Antígenos de Diferenciação de Linfócitos T/análise , Feminino , Lectinas Tipo C/análise , Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL
20.
Appl Radiat Isot ; 130: 80-89, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942333

RESUMO

Simulation of beta particle transport from a Ni-63 radioisotope in silicon using the Monte Carlo N-Particle (MCNP) transport code for monoenergetic beta particle average energy, monoenergetic beta particle maximum energy, and the more precise full beta energy spectrum of Ni-63 were demonstrated. The beta particle penetration depth and the shape of the energy deposition varied significantly for different transport approaches. A penetration depth of 2.25±0.25µm with a peak in energy deposition was found when using a monoenergetic beta particle average energy and a depth of 14.25±0.25µm with an exponential decrease in energy deposition was found when using a full beta energy spectrum and a 0° angular variation. For a 90° angular variation, i.e. an isotropic source, the penetration depth was decreased to 12.75±0.25µm and the backscattering coefficient increased to 0.46 with 30.55% of the beta energy escaping when using a full beta energy spectrum. Similarly, for a 0° angular variation and an isotropic source, an overprediction in the short circuit current and open circuit voltage solved by a simplified drift-diffusion model was observed when compared to experimental results from the literature. A good agreement in the results was found when self-absorption and isotope dilution in the source was considered. The self-absorption effect was 15% for a Ni-63 source with an activity of 0.25mCi. This effect increased to about 28.5% for a higher source activity of 1mCi due to an increase in thickness of the Ni-63 source. Source thicknesses of approximately 0.1µm and 0.4µm for these Ni-63 activities predicted about 15% and 28.5% self-absorption in the source, respectively, using MCNP simulations with an isotropic source. The modeling assumptions with different beta particle energy inputs, junction depth of the semiconductor, backscattering of beta particles, an isotropic beta source, and self-absorption of the radioisotope have significant impacts in betavoltaic battery design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...