Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ann Neurol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949221

RESUMO

OBJECTIVE: Alice in Wonderland syndrome (AIWS) profoundly affects human perception of size and scale, particularly regarding one's own body and the environment. Its neuroanatomical basis has remained elusive, partly because brain lesions causing AIWS can occur in different brain regions. Here, we aimed to determine if brain lesions causing AIWS map to a distributed brain network. METHODS: A retrospective case-control study analyzing 37 cases of lesion-induced AIWS identified through systematic literature review was conducted. Using resting-state functional connectome data from 1,000 healthy individuals, the whole-brain connections of each lesion were estimated and contrasted with those from a control dataset comprising 1,073 lesions associated with 25 other neuropsychiatric syndromes. Additionally, connectivity findings from lesion-induced AIWS cases were compared with functional neuroimaging results from 5 non-lesional AIWS cases. RESULTS: AIWS-associated lesions were located in various brain regions with minimal overlap (≤33%). However, the majority of lesions (≥85%) demonstrated shared connectivity to the right extrastriate body area, known to be selectively activated by viewing body part images, and the inferior parietal cortex, involved in size and scale judgements. This pattern was uniquely characteristic of AIWS when compared with other neuropsychiatric disorders (family-wise error-corrected p < 0.05) and consistent with functional neuroimaging observations in AIWS due to nonlesional causes (median correlation r = 0.56, interquartile range 0.24). INTERPRETATION: AIWS-related perceptual distortions map to one common brain network, encompassing regions critical for body representation and size-scale processing. These findings lend insight into the neuroanatomical localization of higher-order perceptual functions, and may inform future therapeutic strategies for perceptual disorders. ANN NEUROL 2024.

2.
Mov Disord ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924157

RESUMO

BACKGROUND: Transcranial magnetic stimulation-electroencephalography (TMS-EEG) has demonstrated decreased excitability in the primary motor cortex (M1) and increased excitability in the pre-supplementary motor area (pre-SMA) in moderate-advanced Parkinson's disease (PD). OBJECTIVES: The aim was to investigate whether these abnormalities are evident from the early stages of the disease, their behavioral correlates, and relationship to cortico-subcortical connections. METHODS: Twenty-eight early, drug-naive (de novo) PD patients and 28 healthy controls (HCs) underwent TMS-EEG to record TMS-evoked potentials (TEPs) from the primary motor cortex (M1) and the pre-SMA, kinematic recording of finger-tapping movements, and a 3T-MRI (magnetic resonance imaging) scan to obtain diffusion tensor imaging (DTI) reconstruction of white matter (WM) tracts connecting M1 to the ventral lateral anterior thalamic nucleus and pre-SMA to the anterior putamen. RESULTS: We found reduced M1 TEP P30 amplitude in de novo PD patients compared to HCs and similar pre-SMA TEP N40 amplitude between groups. PD patients exhibited smaller amplitude and slower velocity in finger-tapping movements and altered structural integrity in WM tracts of interest, although these changes did not correlate with TEPs. CONCLUSIONS: M1 hypoexcitability is a characteristic of PD from early phases and may be a marker of the parkinsonian state. Pre-SMA hyperexcitability is not evident in early PD and possibly emerges at later stages of the disease. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
J Neurol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743090

RESUMO

BACKGROUND: Research work has shown that hippocampal subfields are atrophic to varying extents in multiple sclerosis (MS) patients. However, studies examining the functional implications of subfield-specific hippocampal damage in early MS are limited. We aim to gain insights into the relationship between hippocampal atrophy and memory function by investigating the correlation between global and regional hippocampal atrophy and memory performance in early MS patients. METHODS: From the Italian Neuroimaging Network Initiative (INNI) dataset, we selected 3D-T1-weighted brain MRIs of 219 early relapsing remitting (RR)MS and 246 healthy controls (HC) to identify hippocampal atrophic areas. At the time of MRI, patients underwent Selective-Reminding-Test (SRT) and Spatial-Recall-Test (SPART) and were classified as mildly (MMI-MS: n.110) or severely (SMI-MS: n:109) memory impaired, according to recently proposed cognitive phenotypes. RESULTS: Early RRMS showed lower hippocampal volumes compared to HC (p < 0.001), while these did not differ between MMI-MS and SMI-MS. In MMI-MS, lower hippocampal volumes correlated with worse memory tests (r = 0.23-0.37, p ≤ 0.01). Atrophic voxels were diffuse in the hippocampus but more prevalent in cornu ammonis (CA, 79%) than in tail (21%). In MMI-MS, decreased subfield volumes correlated with decreases in memory, particularly in the right CA1 (SRT-recall: r = 0.38; SPART: r = 0.34, p < 0.01). No correlations were found in the SMI-MS group. CONCLUSION: Hippocampal atrophy spreads from CA to tail from early disease stages. Subfield hippocampal atrophy is associated with memory impairment in MMI-MS, while this correlation is lost in SMI-MS. This plays in favor of a limited capacity for an adaptive functional reorganization of the hippocampi in MS patients.

4.
Cerebellum ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761352

RESUMO

Substantial evidence highlights the role of the cerebellum in the pathophysiology of tremor in essential tremor (ET), although its potential involvement in altered movement execution in this condition remains unclear. This study aims to explore potential correlations between the cerebellum and basal ganglia functional connectivity and voluntary movement execution abnormalities in ET, objectively assessed with kinematic techniques. A total of 20 patients diagnosed with ET and 18 healthy subjects were enrolled in this study. Tremor and repetitive finger tapping were recorded using an optoelectronic kinematic system. All participants underwent comprehensive 3T-MRI examinations, including 3D-T1 and blood-oxygen-level dependent (BOLD) sequences during resting state. Morphometric analysis was conducted on the 3D-T1 images, while a seed-based analysis was performed to investigate the resting-state functional connectivity (rsFC) of dorsal and ventral portions of the dentate nucleus and the external and internal segments of the globus pallidus. Finally, potential correlations between rsFC alterations in patients and clinical as well as kinematic scores were assessed. Finger tapping movements were slower in ET than in healthy subjects. Compared to healthy subjects, patients with ET exhibited altered FC of both dentate and globus pallidus with cerebellar, basal ganglia, and cortical areas. Interestingly, both dentate and pallidal FC exhibited positive correlations with movement velocity in patients, differently from that we observed in healthy subjects, indicating the higher the FC, the faster the finger tapping. The findings of this study indicate the possible role of both cerebellum and basal ganglia in the pathophysiology of altered voluntary movement execution in patients with ET.

5.
J Neurol ; 271(4): 1813-1823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060030

RESUMO

BACKGROUND: Cognitive impairment is a common clinical manifestation in people with multiple sclerosis (PwMS) and significantly impacts patients' quality life. Cognitive assessment is crucial for treatment decisions and understanding disease progression. Several neuropsychological batteries are used in MS, including the Brief Repeatable Battery of Neuropsychological Tests (BRB-N), Minimal Assessment of Cognitive Function in MS (MACFIMS), and Brief International Cognitive Assessment for MS (BICAMS). However, normative data for BRB-N version A in Italy are outdated. OBJECTIVES: To revise and update normative data for the BRB-N version A in the Italian population. METHODS: From the Italian Neuroimaging Network Initiative (INNI) database, we retrospectively selected 342 healthy subjects (172 males and 170 females) evaluated at four Italian INNI-affiliated sites (Milan, Siena, Rome, Naples). The subjects underwent neuropsychological assessment using the BRB-N version A. Regression-based method relying on scaled scores was used to calculate demographic correction procedures. RESULTS: No significant differences were found in age, education, and sex distribution among the four sites (p ≥ 0.055). Regression analysis provided normative data to calculate demographically adjusted z-scores for each BRB-N version A test. DISCUSSION: This study provides updated normative data for the BRB-N version A in the Italian population. The use of a regression-based method and scaled scores ensures consistency with other neuropsychological batteries commonly used in Italy, namely MACFIMS and BICAMS. The availability of updated normative data increases reliability of neuropsychological assessment of cognitive function in Italian PwMS and other clinical populations using BRB-N version A, providing valuable insights for both clinical and research applications.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Masculino , Feminino , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Cognição , Testes Neuropsicológicos , Itália
6.
Clin Neurophysiol ; 156: 19-27, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844524

RESUMO

OBJECTIVE: Parietal resting-state electroencephalographic (rsEEG) alpha (8-10 Hz) source connectivity is abnormal in HIV-positive persons. Here we tested whether this abnormality may be associated with subcortical white matter vascular lesions in the cerebral hemispheres. METHODS: Clinical, rsEEG, and magnetic resonance imaging (MRI) datasets in 38 HIV-positive persons and clinical and rsEEG datasets in 13 healthy controls were analyzed. Radiologists visually evaluated the subcortical white matter hyperintensities from T2-weighted FLAIR MRIs (i.e., Fazekas scale). In parallel, neurophysiologists estimated the eLORETA rsEEG source lagged linear connectivity from parietal cortical regions of interest. RESULTS: Compared to the HIV participants with no/negligible subcortical white matter hyperintensities, the HIV participants with mild/moderate subcortical white matter hyperintensities showed lower parietal interhemispheric rsEEG alpha lagged linear connectivity. This effect was also observed in HIV-positive persons with unimpaired cognition. This rsEEG marker allowed good discrimination (area under the receiver operating characteristic curve > 0.80) between the HIV-positive individuals with different amounts of subcortical white matter hyperintensities. CONCLUSIONS: The parietal rsEEG alpha source connectivity is associated with subcortical white matter vascular lesions in HIV-positive persons, even without neurocognitive disorders. SIGNIFICANCE: Those MRI-rsEEG markers may be used to screen HIV-positive persons at risk of neurocognitive disorders.


Assuntos
Doença de Alzheimer , Infecções por HIV , Substância Branca , Humanos , Córtex Cerebral/fisiologia , Substância Branca/diagnóstico por imagem , Doença de Alzheimer/psicologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética , Infecções por HIV/diagnóstico por imagem
7.
Front Neurol ; 14: 1210811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767534

RESUMO

Background: The Alice in Wonderland syndrome (AIWS) is a transient neurological disturbance characterized by sensory distortions most frequently associated with migraine in adults. Some lines of evidence suggest that AIWS and migraine might share common pathophysiological mechanisms, therefore we set out to investigate the common and distinct neurophysiological alterations associated with these conditions in migraineurs. Methods: We conducted a case-control study acquiring resting-state fMRI data from 12 migraine patients with AIWS, 12 patients with migraine with typical aura (MA) and 24 age-matched healthy controls (HC). We then compared the interictal thalamic seed-to-voxel and ROI-to-ROI cortico-cortical resting-state functional connectivity between the 3 groups. Results: We found a common pattern of altered thalamic connectivity in MA and AIWS, compared to HC, with more profound and diffuse alterations observed in AIWS. The ROI-to-ROI functional connectivity analysis highlighted an increased connectivity between a lateral occipital region corresponding to area V3 and the posterior part of the superior temporal sulcus (STS) in AIWS, compared to both MA and HC. Conclusion: The posterior STS is a multisensory integration area, while area V3 is considered the starting point of the cortical spreading depression (CSD), the neural correlate of migraine aura. This interictal hyperconnectivity might increase the probability of the CSD to directly diffuse to the posterior STS or deactivating it, causing the AIWS symptoms during the ictal phase. Taken together, these results suggest that AIWS in migraineurs might be a form of complex migraine aura, characterized by the involvement of associative and multisensory integration areas.

8.
Cereb Cortex ; 33(20): 10514-10527, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37615301

RESUMO

Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer's disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.

9.
Biomedicines ; 11(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979732

RESUMO

Dystonia is thought to be a network disorder due to abnormalities in the basal ganglia-thalamo-cortical circuit. We aimed to investigate the white matter (WM) microstructural damage of bundles connecting pre-defined subcortical and cortical regions in cervical dystonia (CD) and blepharospasm (BSP). Thirty-five patients (17 with CD and 18 with BSP) and 17 healthy subjects underwent MRI, including diffusion tensor imaging (DTI). Probabilistic tractography (BedpostX) was performed to reconstruct WM tracts connecting the globus pallidus, putamen and thalamus with the primary motor, primary sensory and supplementary motor cortices. WM tract integrity was evaluated by deriving their DTI metrics. Significant differences in mean, radial and axial diffusivity between CD and HS and between BSP and HS were found in the majority of the reconstructed WM tracts, while no differences were found between the two groups of patients. The observation of abnormalities in DTI metrics of specific WM tracts suggests a diffuse and extensive loss of WM integrity as a common feature of CD and BSP, aligning with the increasing evidence of microstructural damage of several brain regions belonging to specific circuits, such as the basal ganglia-thalamo-cortical circuit, which likely reflects a common pathophysiological mechanism of focal dystonia.

10.
Biomedicines ; 11(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831058

RESUMO

BACKGROUND: Patients with frontotemporal degeneration (FTD) often manifest parkinsonism, which likely results from cortical and subcortical degeneration of brain structures involved in motor control. We used a multimodal magnetic resonance imaging (MRI) approach to investigate possible structural and/or functional alterations in FTD patients with and without parkinsonism (Park+ and Park-). METHODS: Thirty FTD patients (12 Park+, 18 Park-) and 30 healthy controls were enrolled and underwent 3T MRI scanning. MRI analyses included: (1) surface-based morphometry; (2) basal ganglia and thalamic volumetry; (3) diffusion-based probabilistic tractography of fiber tracts connecting the supplementary motor area (SMA) and primary motor cortex (M1) to the putamen, globus pallidus, and thalamus; and (4) resting-state functional connectivity (RSFC) between the aforementioned regions. RESULTS: Patients in Park+ and Park- groups showed comparable patterns of cortical thinning in frontotemporal regions and reduced thalamic volume with respect to controls. Only Park+ patients showed reduced putaminal volume and reduced fractional anisotropy of the fibers connecting the SMA to the globus pallidus, putamen, and thalamus, with respect to controls. Park+ patients also showed decreased RSFC between the SMA and putamen with respect to both Park- patients and controls. CONCLUSIONS: The present findings support the hypothesis that FTD patients with parkinsonism are characterized by neurodegenerative processes in specific corticobasal ganglia-thalamocortical motor loops.

11.
J Neurol ; 270(5): 2734-2742, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36773059

RESUMO

OBJECTIVES: This paper aimed to identify white matter (WM) and gray matter (GM) abnormalities in a sample of early PD patients, and their correlations with motor and non-motor symptom severity. METHODS: We enrolled 62 de novo PD patients and 31 healthy subjects. Disease severity and non-motor symptom burden were assessed by the Unified Parkinson's Disease Rating Scale part III and the Non-Motor Symptoms Scale, respectively. Cognitive performance was assessed using Montreal Cognitive Assessment and Frontal Assessment Battery. All subjects underwent a 3-Tesla MRI protocol. MRI analyses included tract-based spatial statistics, cortical thickness, and subcortical and cerebellar volumetry. RESULTS: In comparison to control subjects, PD patients exhibited lower fractional anisotropy and higher mean, axial, and radial diffusivity in most WM bundles, including corticospinal tracts, the internal and external capsule, the anterior and posterior thalamic radiations, the genu and body of the corpus callosum, cerebellar peduncles, and superior and inferior longitudinal and fronto-occipital fasciculi. Correlations between Montreal Cognitive Assessment scores and fractional anisotropy values in the right posterior thalamic radiation, left superior corona radiata, right inferior-fronto-occipital fasciculus, left inferior longitudinal fasciculus, bilateral anterior thalamic radiations, and bilateral superior longitudinal fasciculi were found. Smaller cerebellar volumes in early PD patients in the left and right crus I were also found. No GM changes were present in subcortical or cortical regions. CONCLUSION: The combined evaluation of WM and GM in the same patient sample demonstrates that WM microstructural abnormalities precede GM structural changes in early PD patients.


Assuntos
Substância Cinzenta , Substância Branca , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Corpo Caloso , Encéfalo/diagnóstico por imagem
12.
J Magn Reson Imaging ; 58(4): 1221-1231, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36661195

RESUMO

BACKGROUND: Current therapeutic strategies in multiple sclerosis (MS) target neurodegeneration. However, the integration of atrophy measures into the clinical scenario is still an unmet need. PURPOSE: To compare methods for whole-brain and gray matter (GM) atrophy measurements using the Italian Neuroimaging Network Initiative (INNI) dataset. STUDY TYPE: Retrospective (data available from INNI). POPULATION: A total of 466 patients with relapsing-remitting MS (mean age = 37.3 ± 10 years, 323 women) and 279 healthy controls (HC; mean age = 38.2 ± 13 years, 164 women). FIELD STRENGTH/SEQUENCE: A 3.0-T, T1-weighted (spin echo and gradient echo without gadolinium injection) and T2-weighted spin echo scans at baseline and after 1 year (170 MS, 48 HC). ASSESSMENT: Structural Image Evaluation using Normalization of Atrophy (SIENA-X/XL; version 5.0.9), Statistical Parametric Mapping (SPM-v12); and Jim-v8 (Xinapse Systems, Colchester, UK) software were applied to all subjects. STATISTICAL TESTS: In MS and HC, we evaluated the intraclass correlation coefficient (ICC) among FSL-SIENA(XL), SPM-v12, and Jim-v8 for cross-sectional whole-brain and GM tissue volumes and their longitudinal changes, the effect size according to the Cohen's d at baseline and the sample size requirement for whole-brain and GM atrophy progression at different power levels (lowest = 0.7, 0.05 alpha level). False discovery rate (Benjamini-Hochberg procedure) correction was applied. A P value <0.05 was considered statistically significant. RESULTS: SPM-v12 and Jim-v8 showed significant agreement for cross-sectional whole-brain (ICC = 0.93 for HC and ICC = 0.84 for MS) and GM volumes (ICC = 0.66 for HC and ICC = 0.90) and longitudinal assessment of GM atrophy (ICC = 0.35 for HC and ICC = 0.59 for MS), while no significant agreement was found in the comparisons between whole-brain and GM volumes for SIENA-X/XL and both SPM-v12 (P = 0.19 and P = 0.29, respectively) and Jim-v8 (P = 0.21 and P = 0.32, respectively). SPM-v12 and Jim-v8 showed the highest effect size for cross-sectional GM atrophy (Cohen's d = -0.63 and -0.61). Jim-v8 and SIENA(XL) showed the smallest sample size requirements for whole-brain (58) and GM atrophy (152), at 0.7 power level. DATA CONCLUSION: The findings obtained in this study should be considered when selecting the appropriate brain atrophy pipeline for MS studies. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 1.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Retrospectivos , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Atrofia/patologia
13.
Neurol Sci ; 44(1): 305-317, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36114397

RESUMO

BACKGROUND AND PURPOSE: Alice in Wonderland syndrome (AIWS) is a neurological disorder characterized by erroneous perception of the body schema or surrounding space. Migraine is the primary cause of AIWS in adults. The pathophysiology of AIWS is largely unknown, especially regarding functional abnormalities. In this study, we compared resting-state functional connectivity (FC) of migraine patients experiencing AIWS, migraine patients with typical aura (MA) and healthy controls (HCs). METHODS: Twelve AIWS, 12 MA, and 24 HCs were enrolled and underwent 3 T MRI scanning. Independent component analysis was used to identify RSNs thought to be relevant for AIWS: visual, salience, basal ganglia, default mode, and executive control networks. Dual regression technique was used to detect between-group differences in RSNs. Finally, AIWS-specific FC alterations were correlated with clinical measures. RESULTS: With respect to HCs, AIWS and MA patients both showed significantly lower (p < 0.05, FDR corrected) FC in lateral and medial visual networks and higher FC in salience and default mode networks. AIWS patients alone showed higher FC in basal ganglia and executive control networks than HCs. When directly compared, AIWS patients showed lower FC in visual networks and higher FC in all other investigated RSNs than MA patients. Lastly, AIWS-specific FC alterations in the executive control network positively correlated with migraine frequency. CONCLUSIONS: AIWS and MA patients showed similar FC alterations in several RSNs, although to a different extent, suggesting common pathophysiological underpinnings. However, AIWS patients showed additional FC alterations, likely due to the complexity of AIWS symptoms involving high-order associative cortical areas.


Assuntos
Síndrome de Alice no País das Maravilhas , Transtornos de Enxaqueca , Humanos , Síndrome de Alice no País das Maravilhas/diagnóstico por imagem , Síndrome de Alice no País das Maravilhas/etiologia , Transtornos de Enxaqueca/diagnóstico , Córtex Cerebral , Imageamento por Ressonância Magnética
14.
Neuroradiology ; 65(1): 131-143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35978042

RESUMO

PURPOSE: To compare resting-state functional connectivity (RSFC) of obese patients responders or non-responders to sleeve gastrectomy (SG) with a group of obese patients with no past medical history of metabolic or bariatric surgery. METHODS: MR images were acquired at 1.5 Tesla. Resting-state fMRI data were analyzed with statistical significance threshold set at p < 0.05, family-wise error (FWE) corrected. RESULTS: Sixty-two subjects were enrolled: 20 controls (age range 25-64; 14 females), 24 responders (excess weight loss > 50%; age range 23-68; 17 females), and 18 non-responders to sleeve gastrectomy (SG) (excess weight loss < 50%; age range 23-67; 13 females). About within-network RSFC, responders showed significantly lower RSFC with respect to both controls and non-responders in the default mode and frontoparietal networks, positively correlating with psychological scores. Non-responders showed significantly higher (p < 0.05, family-wise error (few) corrected) RSFC in regions of the lateral visual network as compared to controls. Regarding between-network RSFC, responders showed significantly higher anti-correlation between executive control and salience networks (p < 0.05, FWE corrected) with respect to both controls and non-responders. Significant positive correlation (Spearman rho = 0.48, p = 0.0012) was found between % of excess weight loss and executive control-salience network RSFC. CONCLUSION: There are differences in brain functional connectivity in either responders or non-responders patients to SG. The present results offer new insights into the neural correlates of outcome in patients who undergo SG and expand knowledge about neural mechanisms which may be related to surgical response.


Assuntos
Mapeamento Encefálico , Encéfalo , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Mapeamento Encefálico/métodos , Obesidade , Gastrectomia , Redução de Peso/fisiologia , Imageamento por Ressonância Magnética/métodos
15.
Brain Sci ; 12(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421857

RESUMO

Background: The phenotypic expression of 22q11.2 deletion syndrome (22q11.2DS) is variable and may include cognitive, psychiatric, and neurological manifestations, e.g., parkinsonism. We investigated brain structural alterations in patients with 22q11.2DS with and without parkinsonism (Park+ and Park-) in comparison with healthy controls (HCs). Methods: Voxel-based morphometry was performed on 3D T1-weighted MR images to explore gray matter volume (GMV) differences between 29 patients (15 Park+, 14 Park-), selected from a consecutive series of 56 adults diagnosed with 22q11.2DS, and 24 HCs. One-way ANOVA and multiple linear regression analyses were performed to explore group differences in GMV and correlations between clinical scores (MDS-UPDR-III and MoCA scores) and structural alterations. Results: Significant between-group differences in GMV were found in the cerebellum, specifically in bilateral lobes VIII and left Crus II, as well as in the left superior occipital gyrus. Although both Park+ and Park- patients showed GMV decrements in these regions with respect to HCs, GMV loss in the right lobe VIII and left Crus II was greater in Park+ than in Park- patients. GMV loss did not correlate with clinical scores. Conclusions: Patients with 22q11.2DS and parkinsonism manifest specific cerebellar volume alterations, supporting the hypothesis of neurodegenerative processes in specific cerebellar regions as a putative pathophysiological mechanism responsible for parkinsonism in patients with 22q11.2DS.

16.
High Alt Med Biol ; 23(1): 57-68, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104160

RESUMO

Committeri Giorgia, Danilo Bondi, Carlo Sestieri, Ginevra Di Matteo, Claudia Piervincenzi, Christian Doria, Roberto Ruffini, Antonello Baldassarre, Tiziana Pietrangelo, Rosamaria Sepe, Riccardo Navarra, Piero Chiacchiaretta, Antonio Ferretti, and Vittore Verratti. Neuropsychological and neuroimaging correlates of high-altitude hypoxia trekking during the "Gokyo Khumbu/Ama Dablam" expedition. High Alt Med Biol. 23:57-68, 2022. Background: Altitude hypoxia exposure may produce cognitive detrimental adaptations and damage to the brain. We aimed at investigating the effects of trekking and hypoxia on neuropsychological and neuroimaging measures. Methods: We recruited two balanced groups of healthy adults, trekkers (n = 12, 6 F and 6 M, trekking in altitude hypoxia) and controls (gender- and age-matched), who were tested before (baseline), during (5,000 m, after 9 days of trekking), and after the expedition for state anxiety, depression, verbal fluency, verbal short-term memory, and working memory. Personality and trait anxiety were also assessed at a baseline level. Neuroimaging measures of cerebral perfusion (arterial spin labeling), white-matter microstructural integrity (diffusion tensor imaging), and resting-state functional connectivity (functional magnetic resonance imaging) were assessed before and after the expedition in the group of trekkers. Results: At baseline, the trekkers showed lower trait anxiety (p = 0.003) and conscientiousness (p = 0.03) than the control group. State anxiety was lower in the trekkers throughout the study (p < 0.001), and state anxiety and depression decreased at the end of the study in both groups (p = 0.043 and p = 0.007, respectively). Verbal fluency increased at the end of the study in both groups (p < 0.001), whereas verbal short-term memory and working memory performance did not change. No significant differences between before and after the expedition were found for neuroimaging measures. Conclusions: We argue that the observed differences in the neuropsychological measures mainly reflect aspecific familiarity and learning effects due to the repeated execution of the same questionnaires and task. The present results thus suggest that detrimental effects on neuropsychological and neuroimaging measures do not necessarily occur as a consequence of short-term exposure to altitude hypoxia up to 5,000 m, especially in the absence of altitude sickness.


Assuntos
Doença da Altitude , Expedições , Montanhismo , Adaptação Fisiológica , Adulto , Altitude , Doença da Altitude/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Hipóxia/diagnóstico por imagem
17.
Neurol Ther ; 11(1): 471-479, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35119678

RESUMO

INTRODUCTION: Despite the increased availability of disease-modifying therapies (DMTs) for treating relapsing-remitting multiple sclerosis (RR-MS), only a few studies have evaluated DMT-associated brain functional changes. METHODS: We investigated whether significant resting-state functional connectivity (FC) changes occurred in RR-MS patients after 6 and 12 months of dimethyl fumarate (DMF) treatment using both a seed-based and data-driven approach. RESULTS: Thirty patients were followed up after 6 months of therapy, and 27 of them reached a 12-month follow-up. Three patients at baseline and only one after 12 months showed gadolinium-enhancing lesions. We did not find any significant FC changes after therapy at either time point. After 12 months of DMF, we observed relatively modest brain volume loss and a significant improvement in Paced Auditory Serial Addition Test 3 s and 25-Foot Walk Test scores. CONCLUSION: The absence of FC changes could be due to the low degree of baseline inflammation in our patients, though we cannot exclude that more time may be required to observe such changes. No FC changes may reflect a beneficial effect of DMF therapy, as supported by conventional MRI findings and clinical improvement.

18.
Neurol Sci ; 43(5): 3321-3332, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34859331

RESUMO

BACKGROUND AND PURPOSE: Alice in Wonderland syndrome (AIWS) is a rare neurological disorder, characterized by an erroneous perception of the body schema or surrounding space. It may be caused by a variety of neurological disorders, but to date, there is no agreement on which brain areas are affected. The aim of this study was to identify brain areas involved in AIWS. METHODS: We conducted a literature search for AIWS cases following brain lesions. Patients were classified according to their symptoms as type A (somesthetic), type B (visual), or type C (somesthetic and visual). Using a lesion mapping approach, lesions were mapped onto a standard brain template and sites of overlap were identified. RESULTS: Of 30 lesions, maximum spatial overlap was present in six cases. Local maxima were identified in the right occipital lobe, specifically in the extrastriate visual cortices and white matter tracts, including the ventral occipital fasciculus, optic tract, and inferior fronto-occipital fasciculus. Overlap was primarily due to type B patients (the most prevalent type, n = 22), who shared an occipital site of brain damage. Type A (n = 5) and C patients (n = 3) were rarer, with lesions disparately located in the right hemisphere (thalamus, insula, frontal lobe, hippocampal/parahippocampal cortex). CONCLUSIONS: Lesion-associated AIWS in type B patients could be related to brain damage in visual pathways located preferentially, but not exclusively, in the right hemisphere. Conversely, the lesion location disparity in cases with somesthetic symptoms suggests underlying structural/functional disconnections requiring further evaluation.


Assuntos
Síndrome de Alice no País das Maravilhas , Síndrome de Alice no País das Maravilhas/diagnóstico por imagem , Síndrome de Alice no País das Maravilhas/etiologia , Imagem Corporal , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Lobo Frontal , Humanos , Lobo Occipital
19.
Front Neurol ; 12: 632917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746887

RESUMO

Only a few studies have evaluated the brain functional changes associated with disease-modifying therapies (DMTs) in multiple sclerosis (MS), though none used a composite measure of clinical and MRI outcomes to evaluate DMT-related brain functional connectivity (FC) measures predictive of short-term outcome. Therefore, we investigated the following: (1) baseline FC differences between patients who showed evidence of disease activity after a specific DMT and those who did not; (2) DMT-related effects on FC, and; (3) possible relationships between DMT-related FC changes and changes in performance. We used a previously analyzed dataset of 30 relapsing MS patients who underwent fingolimod treatment for 6 months and applied the "no evidence of disease activity" (NEDA-3) status as a clinical response indicator of treatment efficacy. Resting-state fMRI data were analyzed to obtain within- and between-network FC measures. After therapy, 14 patients achieved NEDA-3 status (hereinafter NEDA), while 16 did not (EDA). The two groups significantly differed at baseline, with the NEDA group having higher within-network FC in the anterior and posterior default mode, auditory, orbitofrontal, and right frontoparietal networks than the EDA. After therapy, NEDA showed significantly reduced within-network FC in the posterior default mode and left frontoparietal networks and increased between-network FC in the posterior default mode/orbitofrontal networks; they also showed PASAT improvement, which was correlated with greater within-network FC decrease in the posterior default mode network and with greater between-network FC increase. No significant longitudinal FC changes were found in the EDA. Taken together, these findings suggest that NEDA status after fingolimod is related to higher within-network FC at baseline and to a consistent functional reorganization after therapy.

20.
Mult Scler ; 27(4): 539-548, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32463319

RESUMO

BACKGROUND: Damage to the cerebellar sensorimotor and cognitive domains may underlie physical and cognitive disability. OBJECTIVE: To investigate resting-state functional connectivity (FC) of sensorimotor and cognitive cerebellum, and clinical correlates in multiple sclerosis (MS). METHODS: A total of 119 patients with MS and 42 healthy subjects underwent multimodal 3T-magnetic resonance imaging (MRI). Patients were evaluated using the Expanded Disability Status Scale and Multiple Sclerosis Functional Composite Scale. After parcellation of sensorimotor (lobules I-V + VIII) and cognitive cerebellum (lobules VI, VII, IX, X), we calculated cerebellar resting-state FC using a seed-based approach. RESULTS: In patients with MS, the sensorimotor cerebellum showed increased FC mainly with cerebellar, thalamic, and cortical (frontal, parietal, temporal) areas and decreased FC with insular areas; the cognitive cerebellum showed increased FC mainly with thalamic and cortical (temporal-occipital) areas, and decreased FC with frontal-insular areas. Both sensorimotor and cognitive cerebellar FC negatively correlated with disability, and positively with cognitive scores. Cerebellar structural damage only partially influenced results. CONCLUSION: The two neocerebellar circuits showed altered FC with subcortical and cortical areas. The association between increased sensorimotor and cognitive cerebellar FC and low levels of physical and cognitive disability suggests that altered FC might modulate the effects of cerebellar structural damage on clinical condition.


Assuntos
Esclerose Múltipla , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Tálamo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...