Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 29(12): 5192-5199, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28706347

RESUMO

In this work, we demonstrate that a preferential Ga-for-Zn cation exchange is responsible for the increase in photoluminescence that is observed when gallium oleate is added to InZnP alloy QDs. By exposing InZnP QDs with varying Zn/In ratios to gallium oleate and monitoring their optical properties, composition, and size, we conclude that Ga3+ preferentially replaces Zn2+, leading to the formation of InZnP/InGaP core/graded-shell QDs. This cation exchange reaction results in a large increase of the QD photoluminescence, but only for InZnP QDs with Zn/In ≥ 0.5. For InP QDs that do not contain zinc, Ga is most likely incorporated only on the quantum dot surface, and a PL enhancement is not observed. After further growth of a GaP shell and a lattice-matched ZnSeS outer shell, the cation-exchanged InZnP/InGaP QDs continue to exhibit superior PL QY (over 70%) and stability under long-term illumination (840 h, 5 weeks) compared to InZnP cores with the same shells. These results provide important mechanistic insights into recent improvements in InP-based QDs for luminescent applications.

2.
ACS Nano ; 10(4): 4754-62, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27065247

RESUMO

Colloidal quantum dots (QDs) show great promise as LED phosphors due to their tunable narrow-band emission and ability to produce high-quality white light. Currently, the most suitable QDs for lighting applications are based on cadmium, which presents a toxicity problem for consumer applications. The most promising cadmium-free candidate QDs are based on InP, but their quality lags much behind that of cadmium based QDs. This is not only because the synthesis of InP QDs is more challenging than that of Cd-based QDs, but also because the large lattice parameter of InP makes it difficult to grow an epitaxial, defect-free shell on top of such material. Here, we propose a viable approach to overcome this problem by alloying InP nanocrystals with Zn(2+) ions, which enables the synthesis of InxZnyP alloy QDs having lattice constant that can be tuned from 5.93 Å (pure InP QDs) down to 5.39 Å by simply varying the concentration of the Zn precursor. This lattice engineering allows for subsequent strain-free, epitaxial growth of a ZnSezS1-z shell with lattice parameters matching that of the core. We demonstrate, for a wide range of core and shell compositions (i.e., varying x, y, and z), that the photoluminescence quantum yield is maximal (up to 60%) when lattice mismatch is minimal.

3.
Nano Lett ; 14(11): 6257-62, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25347528

RESUMO

Currently, ultrathin colloidal CdSe semiconductor nanoplatelets (NPLs) with a uniform thickness that is controllable up to the atomic scale can be prepared. The optical properties of these 2D semiconductor systems are the subject of extensive research. Here, we reveal their natural morphology and atomic arrangement. Using cryo-TEM (cryo-transmission electron microscopy), we show that the shape of rectangular NPLs in solution resembles a helix. Fast incorporation of these NPLs in silica preserves and immobilizes their helical shape, which allowed us to perform an in-depth study by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Electron tomography measurements confirm and detail the helical shape of these systems. Additionally, high-resolution HAADF-STEM shows the thickness of the NPLs on the atomic scale and furthermore that these are consistently folded along a ⟨110⟩ direction. The presence of a silica shell on both the top and bottom surfaces shows that Cd atoms must be accessible for silica precursor (and ligand) molecules on both sides.

4.
ACS Nano ; 8(10): 10486-95, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25197767

RESUMO

We studied spontaneously self-assembled aggregates in a suspension of CdSe/CdS core/shell nanorods (NRs). The influence of the length and concentration of the NRs and the suspension temperature on the size of the aggregates was investigated using in situ small-angle X-ray scattering (SAXS) and linear dichroism (LD) measurements under high magnetic fields (up to 30 T). The SAXS patterns reveal the existence of crystalline 2-dimensional sheets of ordered NRs with an unusually large distance between the rods. The LD measurements show that the size of the sheets depends on the free-energy driving force for NR self-assembly. More precisely, the sheets are larger if the attraction between NRs is stronger, if the temperature is lower, or if the NR concentration is higher. We show that the formation of large NR sheets is a slow process that can take days. Our in situ results of the structures that spontaneously form in the bulk suspension could further our understanding of NR self-assembly into mono- or multilayer superlattices that occurs at the suspension/air interface upon evaporation of the solvent.

5.
ACS Nano ; 8(6): 5921-31, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24861569

RESUMO

Light emission of semiconductor nanocrystals is a complex process, depending on many factors, among which are the quantum mechanical size confinement of excitons (coupled electron-hole pairs) and the influence of confined phonon modes and the nanocrystal surface. Despite years of research, the nature of nanocrystal emission at low temperatures is still under debate. Here we unravel the different optical recombination pathways of CdSe/CdS dot-in-rod systems that show an unprecedented number of narrow emission lines upon resonant laser excitation. By using self-assembled, vertically aligned rods and application of crystallographically oriented high magnetic fields, the origin of all these peaks is established. We observe a clear signature of an acoustic-phonon assisted transition, separated from the zero-phonon emission and optical-phonon replica, proving that nanocrystal light emission results from an intricate interplay between bright (optically allowed) and dark (optically forbidden) exciton states, coupled to both acoustic and optical phonon modes.

6.
Nano Lett ; 13(10): 4884-92, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24010869

RESUMO

Progress to reduce nonradiative Auger decay in colloidal nanocrystals has recently been made by growing thick shells. However, the physics of Auger suppression is not yet fully understood. Here, we examine the dynamics and spectral characteristics of single CdSe-dot-in-CdS-rod nanocrystals. These exhibit blinking due to charging/discharging, as well as trap-related blinking. We show that one-dimensional electron delocalization into the rod-shaped shell can be as effective as a thick spherical shell at reducing Auger recombination of the negative trion state.

7.
ACS Nano ; 7(7): 5984-92, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23802654

RESUMO

We demonstrate that a simple silver coated ball lens can be used to accurately measure the entire distribution of radiative transition rates of quantum dot nanocrystals. This simple and cost-effective implementation of Drexhage's method that uses nanometer-controlled optical mode density variations near a mirror, not only allows an extraction of calibrated ensemble-averaged rates, but for the first time also to quantify the full inhomogeneous dispersion of radiative and non radiative decay rates across thousands of nanocrystals. We apply the technique to novel ultrastable CdSe/CdS dot-in-rod emitters. The emitters are of large current interest due to their improved stability and reduced blinking. We retrieve a room-temperature ensemble average quantum efficiency of 0.87 ± 0.08 at a mean lifetime around 20 ns. We confirm a log-normal distribution of decay rates as often assumed in literature, and we show that the rate distribution-width, that amounts to about 30% of the mean decay rate, is strongly dependent on the local density of optical states.


Assuntos
Compostos de Cádmio/química , Lentes , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula , Teoria Quântica
8.
Nano Lett ; 12(11): 5515-23, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23038984

RESUMO

We study the self-assembly of colloidal CdSe/CdS nanorods (NRs) at the liquid/air interface combining time-resolved in situ grazing-incidence small angle X-ray scattering (GISAXS) and ex situ transmission electron microscopy (TEM). Our study shows that NR superstructure formation occurs at the liquid/air interface. Short NRs self-assemble into micrometers long tracks of NRs lying side by side flat on the surface. In contrast, longer NRs align vertically into ordered superstructures. Systematic variation of the NR length and initial concentration of the NR dispersion allowed us to tune the orientation of the NRs in the final superstructure. With GISAXS, we were able to follow the dynamics of the self-assembly. We propose a model of hierarchical self-organization that provides a basis for the understanding of the length-dependent self-organization of NRs at the liquid/air interface. This opens the way to new materials based on NR membranes and anisotropic thin films.


Assuntos
Coloides/química , Nanotecnologia/métodos , Nanotubos/química , Ar , Anisotropia , Compostos de Cádmio/química , Desenho de Equipamento , Teste de Materiais , Nanopartículas Metálicas , Microscopia Eletrônica de Transmissão/métodos , Espalhamento a Baixo Ângulo , Compostos de Selênio/química , Semicondutores , Solventes/química , Fatores de Tempo
9.
ACS Nano ; 6(10): 9058-67, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22978378

RESUMO

Thermal quenching of quantum dot (QD) luminescence is important for application in luminescent devices. Systematic studies of the quenching behavior above 300 K are, however, lacking. Here, high-temperature (300-500 K) luminescence studies are reported for highly efficient CdSe core-shell quantum dots (QDs), aimed at obtaining insight into temperature quenching of QD emission. Through thermal cycling (yoyo) experiments for QDs in polymer matrices, reversible and irreversible luminescence quenching processes can be distinguished. For a variety of core-shell systems, reversible quenching is observed in a similar temperature range, between 100 and 180 °C. The irreversible quenching behavior varies between different systems. Mechanisms for thermal quenching are discussed.


Assuntos
Coloides/química , Medições Luminescentes/métodos , Pontos Quânticos , Temperatura Alta , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA