Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 19(11): e3001350, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748545

RESUMO

The medial habenula (mHb) is an understudied small brain nucleus linking forebrain and midbrain structures controlling anxiety and fear behaviors. The mechanisms that maintain the structural and functional integrity of mHb neurons and their synapses remain unknown. Using spatiotemporally controlled Cre-mediated recombination in adult mice, we found that the glial cell-derived neurotrophic factor receptor alpha 1 (GFRα1) is required in adult mHb neurons for synaptic stability and function. mHb neurons express some of the highest levels of GFRα1 in the mouse brain, and acute ablation of GFRα1 results in loss of septohabenular and habenulointerpeduncular glutamatergic synapses, with the remaining synapses displaying reduced numbers of presynaptic vesicles. Chemo- and optogenetic studies in mice lacking GFRα1 revealed impaired circuit connectivity, reduced AMPA receptor postsynaptic currents, and abnormally low rectification index (R.I.) of AMPARs, suggesting reduced Ca2+ permeability. Further biochemical and proximity ligation assay (PLA) studies defined the presence of GluA1/GluA2 (Ca2+ impermeable) as well as GluA1/GluA4 (Ca2+ permeable) AMPAR complexes in mHb neurons, as well as clear differences in the levels and association of AMPAR subunits with mHb neurons lacking GFRα1. Finally, acute loss of GFRα1 in adult mHb neurons reduced anxiety-like behavior and potentiated context-based fear responses, phenocopying the effects of lesions to septal projections to the mHb. These results uncover an unexpected function for GFRα1 in the maintenance and function of adult glutamatergic synapses and reveal a potential new mechanism for regulating synaptic plasticity in the septohabenulointerpeduncular pathway and attuning of anxiety and fear behaviors.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Habenula/metabolismo , Neurônios/metabolismo , Envelhecimento , Animais , Ansiedade/fisiopatologia , Comportamento Animal , Medo/fisiologia , Glutamatos/metabolismo , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia , Terminações Pré-Sinápticas , Receptores de AMPA/metabolismo , Sinapses
2.
Sci Rep ; 8(1): 13768, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213968

RESUMO

Optogenetics provides tools to control afferent activity in brain microcircuits. However, this requires optical methods that can evoke asynchronous and coordinated activity within neuronal ensembles in a spatio-temporally precise way. Here we describe a light patterning method, which combines MHz acousto-optic beam steering and adjustable low numerical aperture Gaussian beams, to achieve fast 2D targeting in scattering tissue. Using mossy fiber afferents to the cerebellar cortex as a testbed, we demonstrate single fiber optogenetic stimulation with micron-scale lateral resolution, >100 µm depth-penetration and 0.1 ms spiking precision. Protracted spatio-temporal patterns of light delivered by our illumination system evoked sustained asynchronous mossy fiber activity with excellent repeatability. Combining optical and electrical stimulations, we show that the cerebellar granular layer performs nonlinear integration, whereby sustained mossy fiber activity provides a permissive context for the transmission of salient inputs, enriching combinatorial views on mossy fiber pattern separation.


Assuntos
Luz , Fibras Nervosas/fisiologia , Optogenética/métodos , Células de Purkinje/fisiologia , Córtex Sensório-Motor/fisiologia , Animais , Córtex Cerebelar/fisiologia , Estimulação Elétrica , Eletrofisiologia/métodos , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Fótons , Análise Espaço-Temporal
3.
Cell Rep ; 22(3): 693-705, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29346767

RESUMO

The medial habenula (MHb) is an epithalamic hub contributing to expression and extinction of aversive states by bridging forebrain areas and midbrain monoaminergic centers. Although contradictory information exists regarding their synaptic properties, the physiology of the excitatory inputs to the MHb from the posterior septum remains elusive. Here, combining optogenetics-based mapping with ex vivo and in vivo physiology, we examine the synaptic properties of posterior septal afferents to the MHb and how they influence behavior. We demonstrate that MHb cells receive sparse inputs producing purely glutamatergic responses via calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), heterotrimeric GluN2A-GluN2B-GluN1 N-methyl-D-aspartate (NMDA) receptors, and inhibitory group II metabotropic glutamate receptors. We describe the complex integration dynamics of these components by MHb cells. Finally, we combine ex vivo data with realistic afferent firing patterns recorded in vivo to demonstrate that efficient optogenetic septal stimulation in the MHb induces anxiolysis and promotes locomotion, contributing long-awaited evidence in favor of the importance of this septo-habenular pathway.


Assuntos
Habenula/fisiopatologia , Transmissão Sináptica/genética , Animais , Humanos , Camundongos
4.
Front Cell Neurosci ; 11: 140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559797

RESUMO

Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer's collaterals - CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.

5.
Elife ; 42015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25965178

RESUMO

The cerebellum, a crucial center for motor coordination, is composed of a cortex and several nuclei. The main mode of interaction between these two parts is considered to be formed by the inhibitory control of the nuclei by cortical Purkinje neurons. We now amend this view by showing that inhibitory GABA-glycinergic neurons of the cerebellar nuclei (CN) project profusely into the cerebellar cortex, where they make synaptic contacts on a GABAergic subpopulation of cerebellar Golgi cells. These spontaneously firing Golgi cells are inhibited by optogenetic activation of the inhibitory nucleo-cortical fibers both in vitro and in vivo. Our data suggest that the CN may contribute to the functional recruitment of the cerebellar cortex by decreasing Golgi cell inhibition onto granule cells.


Assuntos
Córtex Cerebelar/fisiologia , Núcleos Cerebelares/citologia , Interneurônios/fisiologia , Modelos Neurológicos , Vias Neurais/fisiologia , Animais , Núcleos Cerebelares/fisiologia , Imuno-Histoquímica , Proteínas Luminescentes , Camundongos , Optogenética , Proteína Vermelha Fluorescente
6.
J Neurosci ; 33(30): 12430-46, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884948

RESUMO

The function of inhibitory interneurons within brain microcircuits depends critically on the nature and properties of their excitatory synaptic drive. Golgi cells (GoCs) of the cerebellum inhibit cerebellar granule cells (GrCs) and are driven both by feedforward mossy fiber (mf) and feedback GrC excitation. Here, we have characterized GrC inputs to GoCs in rats and mice. We show that, during sustained mf discharge, synapses from local GrCs contribute equivalent charge to GoCs as mf synapses, arguing for the importance of the feedback inhibition. Previous studies predicted that GrC-GoC synapses occur predominantly between parallel fibers (pfs) and apical GoC dendrites in the molecular layer (ML). By combining EM and Ca(2+) imaging, we now demonstrate the presence of functional synaptic contacts between ascending axons (aa) of GrCs and basolateral dendrites of GoCs in the granular layer (GL). Immunohistochemical quantification estimates these contacts to be ∼400 per GoC. Using Ca(2+) imaging to identify synaptic inputs, we show that EPSCs from aa and mf contacts in basolateral dendrites display similarly fast kinetics, whereas pf inputs in the ML exhibit markedly slower kinetics as they undergo strong filtering by apical dendrites. We estimate that approximately half of the local GrC contacts generate fast EPSCs, indicating their basolateral location in the GL. We conclude that GrCs, through their aa contacts onto proximal GoC dendrites, define a powerful feedback inhibitory circuit in the GL.


Assuntos
Axônios/fisiologia , Cerebelo/citologia , Cerebelo/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/ultraestrutura , Cálcio/metabolismo , Dendritos/fisiologia , Dendritos/ultraestrutura , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Retroalimentação Fisiológica/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Fibras Nervosas/fisiologia , Fibras Nervosas/ultraestrutura , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...