Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(1): 352-357, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459334

RESUMO

The direct conversion of untreated microcrystalline cellulose into C2-C3 alcohols, through a one-pot process promoted by the heterogeneous bimetallic Pd/Fe3O4 catalyst, is presented. The process is selfsustainable without the addition of external molecular hydrogen or acid/basic promoters and is mainly selective toward ethanol. At 240 °C, a complete cellulose conversion was reached after 12 h with an ethanol molar selectivity of 51% among liquid products. The synergistic effect played by water (which aids in the chemical pretreatment means of cellulose through the hydrolysis process) and the Pd/Fe3O4 catalyst (which catalyzes the hydrogenolysis reaction driving the pattern of obtained products) is elucidated.

2.
ChemSusChem ; 4(8): 1143-50, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21714100

RESUMO

Catalytic hydrogenolysis, with high conversion and selectivity, promoted by supported palladium substrates in isopropanol and dioxane at a low H(2) pressure (0.5 MPa), is reported for the first time. The catalysts, characterized by using BET isotherms, transmission electron microscopy (TEM), temperature-programmed reduction (TPR), powder X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were obtained by coprecipitation and impregnation techniques. The coprecipitation method allows catalysts with a metal-metal or a metal-support interaction to be obtained, which enhances the catalytic performance for both the conversion of glycerol and the selectivity to 1,2-propanediol. Analogous reactions carried out with catalysts prepared by using impregnation are less efficient. A study of the solvent and temperature effect is also presented. The obtained results allow the hydrogenolysis mechanism to be inferred; this involves both the direct replacement of the carbon-bonded OH group by an incoming hydrogen or the formation of hydroxyacetone as an intermediate, which subsequently undergoes a hydrogenation process to give 1,2-propanediol. Finally, catalytic tests on a large-scale reaction at a higher H(2) pressure and recycling of the samples were carried out with the better performing catalysts (Pd/CoO and Pd/Fe(2)O(3) prepared by using coprecipitation) to verify possible industrial achievements.


Assuntos
Glicerol/química , Hidrogênio/química , Paládio/química , Propilenoglicol/síntese química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA