Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cells ; 12(15)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37566006

RESUMO

Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Camundongos , Camundongos Knockout , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Ansiedade/tratamento farmacológico
2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511622

RESUMO

Hyperacusis, i.e., an increased sensitivity to sounds, is described in several neurodevelopmental disorders (NDDs), including Fragile X Syndrome (FXS). The mechanisms underlying hyperacusis in FXS are still largely unknown and effective therapies are lacking. Big conductance calcium-activated potassium (BKCa) channels were proposed as a therapeutic target to treat several behavioral disturbances in FXS preclinical models, but their role in mediating their auditory alterations was not specifically addressed. Furthermore, studies on the acoustic phenotypes of FXS animal models mostly focused on central rather than peripheral auditory pathways. Here, we provided an extensive characterization of the peripheral auditory phenotype of the Fmr1-knockout (KO) mouse model of FXS at adulthood. We also assessed whether the acute administration of Chlorzoxazone, a BKCa agonist, could rescue the auditory abnormalities of adult mutant mice. Fmr1-KO mice both at 3 and 6 months showed a hyperacusis-like startle phenotype with paradoxically reduced auditory brainstem responses associated with a loss of ribbon synapses in the inner hair cells (IHCs) compared to their wild-type (WT) littermates. BKCa expression was markedly reduced in the IHCs of KOs compared to WT mice, but only at 6 months, when Chlorzoxazone rescued mutant auditory dysfunction. Our findings highlight the age-dependent and progressive contribution of peripheral mechanisms and BKCa channels to adult hyperacusis in FXS, suggesting a novel therapeutic target to treat auditory dysfunction in NDDs.


Assuntos
Síndrome do Cromossomo X Frágil , Hiperacusia , Animais , Camundongos , Vias Auditivas/metabolismo , Clorzoxazona , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Camundongos Knockout
3.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511156

RESUMO

Fragile X syndrome (FXS) is a pervasive developmental disorder and the most common monogenic cause of autism spectrum disorder (ASD). Female heterozygous (HET) carriers play a major role in the transmission of the pathology and present several FXS- and ASD-like behavioral alterations. Despite their clear genetic origins, FXS symptoms are known to be modulated by environmental factors, e.g., exposure to chronic stress, especially during critical life periods, such as pregnancy. Pregnancy, together with pups' care, constitutes maternal experience, i.e., another powerful environmental factor affecting several neurobehavioral functions in females. Here we investigated the impact of maternal experience on the long-term effects of stress in Fmr1-HET female mice. Our findings demonstrated that the behavioral abnormalities of HET females, i.e., hyperactivity and memory deficits, were unaffected by stress or maternal experience. In contrast, stress, independently of maternal experience, induced the appearance of cognitive deficits in WT mice. Maternal experience increased anxiety levels in all mice and enhanced their corticosterone levels, concomitantly promoting the effects of stress on social communication and adrenal glands. In translational terms, these results advance our understanding of the environmental modulation of the behavioral alterations observed in FXS female carriers and highlight the long-term impact of maternal experience and its interactions with chronic stress.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Estresse Psicológico , Animais , Feminino , Camundongos , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/psicologia , Camundongos Knockout , Comportamento Social
4.
Eur J Neurosci ; 57(12): 2062-2096, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889803

RESUMO

Mice and rats emit ultrasonic vocalizations (USVs), which may express their arousal and emotional states, to communicate with each other. There is continued scientific effort to better understand the functions of USVs as a central element of the rodent behavioral repertoire. However, studying USVs is not only important because of their ethological relevance, but also because they are widely applied as a behavioral readout in various fields of biomedical research. In mice and rats, a large number of experimental models of brain disorders exist and studying the emission of USVs in these models can provide valuable information about the health status of the animals and the effectiveness of possible interventions, both environmental and pharmacological. This review (i) provides an updated overview of the contexts in which ultrasonic calling behaviour of mice and rats has particularly high translational value, and (ii) gives some examples of novel approaches and tools used for the analysis of USVs in mice and rats, combining qualitative and quantitative methods. The relevance of age and sex differences as well as the importance of longitudinal evaluations of calling and non-calling behaviour is also discussed. Finally, the importance of assessing the communicative impact of USVs in the receiver, that is, through playback studies, is highlighted.


Assuntos
Ultrassom , Vocalização Animal , Feminino , Ratos , Animais , Masculino , Neurofarmacologia , Emoções , Roedores
5.
Cells ; 12(3)2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36766733

RESUMO

Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a chromosomic microdeletion (7q11.23). WBS has been modeled by a mouse line having a complete deletion (CD) of the equivalent mouse locus. This model has been largely used to investigate the etiopathological mechanisms of WBS, although pharmacological therapies have not been identified yet. Surprisingly, CD mice were so far mainly tested in adulthood, despite the developmental nature of WBS and the critical relevance of early timing for potential treatments. Here we provide for the first time a phenotypic characterization of CD mice of both sexes during infancy and adolescence, i.e., between birth and 7 weeks of age. CD pups of both sexes showed reduced body growth, delayed sensory development, and altered patterns of ultrasonic vocalizations and exploratory behaviors. Adolescent CD mice showed reduced locomotion and acoustic startle response, and altered social interaction and communication, the latter being more pronounced in female mice. Juvenile CD mutants of both sexes also displayed reduced brain weight, cortical and hippocampal dendritic length, and spine density. Our findings highlight the critical relevance of early neurobehavioral alterations as biomarkers of WBS pathology, underlying the importance of adolescence for identifying novel therapeutic targets for this neurological disorder.


Assuntos
Síndrome de Williams , Masculino , Camundongos , Feminino , Animais , Síndrome de Williams/genética , Síndrome de Williams/patologia , Reflexo de Sobressalto , Modelos Animais de Doenças , Hipocampo/patologia
6.
Front Cell Neurosci ; 16: 917183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385949

RESUMO

Fragile X syndrome (FXS) is a major neurodevelopmental disorder and the most common monogenic cause of autism spectrum disorder (ASD). FXS is caused by a mutation in the X-linked FMR1 gene leading to the absence of the FMRP protein, inducing several behavioral deficits, including motor, emotional, cognitive, and social abnormalities. Beside its clear genetic origins, FXS can be modulated by environmental factors, e.g., stress exposure: indeed the behavioral phenotype of FXS, as well as of ASD patients can be exacerbated by the repeated experience of stressful events, especially early in life. Here we investigated the long-term effects of prenatal exposure to unpredictable chronic stress on the behavioral phenotype of the Fmr1-knock-out (KO) mouse model for FXS and ASD. Mice were tested for FXS- and ASD-relevant behaviors first at adulthood (3 months) and then at aging (18 months), in order to assess the persistence and the potential time-related progression of the stress effects. Stress induced the selective emergence of behavioral deficits in Fmr1-KO mice that were evident in spatial memory only at aging. Stress also exerted several age-specific behavioral effects in mice of both genotypes: at adulthood it enhanced anxiety levels and reduced social interaction, while at aging it enhanced locomotor activity and reduced the complexity of ultrasonic calls. Our findings underline the relevance of gene-environment interactions in mouse models of neurodevelopmental syndromes and highlight the long-term behavioral impact of prenatal stress in laboratory mice.

7.
Front Behav Neurosci ; 16: 883353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910678

RESUMO

Ultrasonic vocalizations (USVs) are a major tool for assessing social communication in laboratory mice during their entire lifespan. At adulthood, male mice preferentially emit USVs toward a female conspecific, while females mostly produce ultrasonic calls when facing an adult intruder of the same sex. Recent studies have developed several sophisticated tools to analyze adult mouse USVs, especially in males, because of the increasing relevance of adult communication for behavioral phenotyping of mouse models of autism spectrum disorder (ASD). Little attention has been instead devoted to adult female USVs and impact of sex differences on the quantitative and qualitative characteristics of mouse USVs. Most of the studies have also focused on a single testing session, often without concomitant assessment of other social behaviors (e.g., sniffing), so little is still known about the link between USVs and other aspects of social interaction and their stability/variations across multiple encounters. Here, we evaluated the USVs emitted by adult male and female mice during 3 repeated encounters with an unfamiliar female, with equal or different pre-testing isolation periods between sexes. We demonstrated clear sex differences in several USVs' characteristics and other social behaviors, and these were mostly stable across the encounters and independent of pre-testing isolation. The estrous cycle of the tested females exerted quantitative effects on their vocal and non-vocal behaviors, although it did not affect the qualitative composition of ultrasonic calls. Our findings obtained in B6 mice, i.e., the strain most widely used for engineering of transgenic mouse lines, contribute to provide new guidelines for assessing ultrasonic communication in male and female adult mice.

10.
Sci Rep ; 12(1): 7269, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508566

RESUMO

Fragile X Syndrome (FXS) is the most common heritable form of mental retardation and monogenic cause of autism spectrum disorder (ASD). FXS is due to a mutation in the X-linked FMR1 gene and is characterized by motor, cognitive and social alterations, mostly overlapping with ASD behavioral phenotypes. The severity of these symptoms and their timing may be exacerbated and/or advanced by environmental adversity interacting with the genetic mutation. We therefore tested the effects of the prenatal exposure to unpredictable chronic stress on the behavioral phenotype of juveniles of both sexes in the Fmr1 knock-out (KO) mouse model of FXS. Mice underwent behavioral tests at 7-8 weeks of age, that is, when most of the relevant behavioral alterations are absent or mild in Fmr1-KOs. Stress induced the early appearance of deficits in spontaneous alternation in KO male mice, without exacerbating the behavioral phenotype of mutant females. In males stress also altered social interaction and communication, but mostly in WT mice, while in females it induced effects on locomotion and communication in mice of both genotypes. Our data therefore highlight the sex-dependent relevance of early environmental stressors to interact with genetic factors to influence the appearance of selected FXS- and ASD-like phenotypes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Síndrome do Cromossomo X Frágil , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Interação Gene-Ambiente , Masculino , Camundongos , Camundongos Knockout , Caracteres Sexuais
11.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626639

RESUMO

Social behavior is a basic domain affected by several neurodevelopmental disorders, including ASD and a heterogeneous set of neuropsychiatric disorders. The SCRIB gene that codes for the polarity protein SCRIBBLE has been identified as a risk gene for spina bifida, the most common type of neural tube defect, found at high frequencies in autistic patients, as well as other congenital anomalies. The deletions and mutations of the 8q24.3 region encompassing SCRIB are also associated with multisyndromic and rare disorders. Nonetheless, the potential link between SCRIB and relevant social phenotypes has not been fully investigated. Hence, we show that Scribcrc/+ mice, carrying a mutated version of Scrib, displayed reduced social motivation behavior and social habituation, while other behavioral domains were unaltered. Social deficits were associated with the upregulation of ERK phosphorylation, together with increased c-Fos activity. Importantly, the social alterations were rescued by both direct and indirect pERK inhibition. These results support a link between polarity genes, social behaviors and hippocampal functionality and suggest a role for SCRIB in the etiopathology of neurodevelopmental disorders. Furthermore, our data demonstrate the crucial role of the MAPK/ERK signaling pathway in underlying social motivation behavior, thus supporting its relevance as a therapeutic target.


Assuntos
Sistema de Sinalização das MAP Quinases , Motivação , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Comportamento Social
12.
Neurosci Biobehav Rev ; 132: 664-678, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813825

RESUMO

Recent years have seen an impressive amount of research devoted to understanding the etiopathology of Autism Spectrum Disorder (ASD) and developing therapies for this syndrome. Because of the lack of biomarkers of ASD, this work has been largely based on the behavioral characterization of rodent models, based on a multitude of genetic and environmental manipulations. Here we highlight how the endocannabinoid system (ECS) has recently emerged within this context of mouse behavioral studies as an etiopathological factor in ASD and a valid potential therapeutic target. We summarize the most recent results showing alterations of the ECS in rodent models of ASD, and demonstrating ASD-like behaviors in mice with altered ECS, induced either by genetic or pharmacological manipulations. We also give a critical overview of the most relevant advances in designing treatments and novel mouse models for ASD targeting the ECS, highlighting the relevance of thorough and innovative behavioral approaches to investigate the mechanisms acting underneath the complex features of ASD.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Biomarcadores , Modelos Animais de Doenças , Endocanabinoides , Camundongos
13.
Front Aging Neurosci ; 13: 756449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733152

RESUMO

Age-related hidden hearing loss is often described as a cochlear synaptopathy that results from a progressive degeneration of the inner hair cell (IHC) ribbon synapses. The functional changes occurring at these synapses during aging are not fully understood. Here, we characterized this aging process in IHCs of C57BL/6J mice, a strain which is known to carry a cadherin-23 mutation and experiences early hearing loss with age. These mice, while displaying a large increase in auditory brainstem thresholds due to 50% loss of IHC synaptic ribbons at middle age (postnatal day 365), paradoxically showed enhanced acoustic startle reflex suggesting a hyperacusis-like response. The auditory defect was associated with a large shrinkage of the IHCs' cell body and a drastic enlargement of their remaining presynaptic ribbons which were facing enlarged postsynaptic AMPAR clusters. Presynaptic Ca2+ microdomains and the capacity of IHCs to sustain high rates of exocytosis were largely increased, while on the contrary the expression of the fast-repolarizing BK channels, known to negatively control transmitter release, was decreased. This age-related synaptic plasticity in IHCs suggested a functional potentiation of synaptic transmission at the surviving synapses, a process that could partially compensate the decrease in synapse number and underlie hyperacusis.

14.
Autism Res ; 14(9): 1854-1872, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34173729

RESUMO

Clinical and preclinical findings have suggested a role of the endocannabinoid system (ECS) in the etiopathology of autism spectrum disorder (ASD). Previous mouse studies have investigated the role of ECS in several behavioral domains; however, none of them has performed an extensive assessment of social and communication behaviors, that is, the main core features of ASD. This study employed a mouse line lacking the primary endocannabinoid receptor (CB1r) and characterized ultrasonic communication and social interaction in CB1-/- , CB1+/- , and CB1+/+ males and females. Quantitative and qualitative alterations in ultrasonic vocalizations (USVs) were observed in CB1 null mice both during early development (i.e., between postnatal days 4 and 10), and at adulthood (i.e., at 3 months of age). Adult mutants also showed marked deficits in social interest in the three-chamber test and social investigation in the direct social interaction test. These behavioral alterations were mostly observed in both sexes and appeared more marked in CB1-/- than CB1+/- mutant mice. Importantly, the adult USV alterations could not be attributed to differences in anxiety or sensorimotor abilities, as assessed by the elevated plus maze and auditory startle tests. Our findings demonstrate the role of CB1r in social communication and behavior, supporting the use of the CB1 full knockout mouse in preclinical research on these ASD-relevant core domains. LAY SUMMARY: The endocannabinoid system (ECS) is important for brain development and neural function and is therefore likely to be involved in neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Here we investigated changes in social behavior and communication, which are core features of ASD, in male and female mice lacking the chief receptor of this system. Our results show that loss of this receptor results in several changes in social behavior and communication both during early development and in adulthood, thus supporting the role of the ECS in these ASD-core behavioral domains.


Assuntos
Transtorno do Espectro Autista , Comunicação , Receptor CB1 de Canabinoide/genética , Interação Social , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Comportamento Social
15.
Prog Mol Biol Transl Sci ; 173: 183-208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32711810

RESUMO

A substantive volume of research on autism spectrum disorder (ASD) has emerged in recent years adding to our understanding of the etiopathological process. Preclinical models in mice and rats have been highly instrumental in modeling and dissecting the contributions of a multitude of known genetic and environmental risk factors. However, the translation of preclinical data into suitable drug targets must overcome three critical hurdles: (i) ASD comprises a highly heterogeneous group of conditions that can markedly differ in terms of their clinical presentation and symptoms, (ii) the plethora of genetic and environmental risk factors suggests a complex, non-unitary, etiopathology, and (iii) the lack of consensus over the myriad of preclinical models, with respect to both construct validity and face validity. Against this backdrop, this Chapter traces how the endocannabinoid system (ECS) has emerged as a promising target for intervention with predictive validity. Recent supportive preclinical evidence is summarized, especially studies in mice demonstrating the emergence of ASD-like behaviors following diverse genetic or pharmacological manipulations targeting the ECS. The critical relevance of ECS to the complex pathogenesis of ASD is underscored by its multiple roles in modulating neuronal functions and shaping brain development. Finally, we argue that important lessons have been learned from the novel mouse models of ASD, which not only stimulate game-changing innovative treatments but also foster a consensual framework to integrate the diverse approaches applied in the search of novel treatments for ASD.


Assuntos
Transtorno do Espectro Autista/metabolismo , Endocanabinoides/metabolismo , Animais , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Fenótipo , Projetos de Pesquisa
16.
Neuropsychopharmacology ; 43(3): 492-502, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28722023

RESUMO

In fragile X syndrome (FXS), sensory hypersensitivity and impaired habituation is thought to result in attention overload and various behavioral abnormalities in reaction to the excessive and remanent salience of environment features that would normally be ignored. This phenomenon, termed sensory defensiveness, has been proposed as the potential cause of hyperactivity, hyperarousal, and negative reactions to changes in routine that are often deleterious for FXS patients. However, the lack of tools for manipulating sensory hypersensitivity has not allowed the experimental testing required to evaluate the relevance of this hypothesis. Recent work has shown that BMS-204352, a BKCa channel agonist, was efficient to reverse cortical hyperexcitability and related sensory hypersensitivity in the Fmr1-KO mouse model of FXS. In the present study, we report that exposing Fmr1-KO mice to novel or unfamiliar environments resulted in multiple behavioral perturbations, such as hyperactivity, impaired nest building and excessive grooming of the back. Reversing sensory hypersensitivity with the BKCa channel agonist BMS-204352 prevented these behavioral abnormalities in Fmr1-KO mice. These results are in support of the sensory defensiveness hypothesis, and confirm BKCa as a potentially relevant molecular target for the development of drug medication against FXS/ASD.


Assuntos
Síndrome do Cromossomo X Frágil/fisiopatologia , Asseio Animal/fisiologia , Atividade Motora/fisiologia , Comportamento de Nidação/fisiologia , Animais , Ansiolíticos/farmacologia , Diazepam/farmacologia , Modelos Animais de Doenças , Meio Ambiente , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Asseio Animal/efeitos dos fármacos , Indóis/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/agonistas , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Masculino , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Comportamento de Nidação/efeitos dos fármacos , Neurotransmissores/farmacologia , Psicotrópicos/farmacologia , Reconhecimento Psicológico , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia
17.
Autism Res ; 10(10): 1584-1596, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28590057

RESUMO

Fragile X syndrome (FXS) is a developmental disorder caused by a mutation in the X-linked FMR1 gene, coding for the FMRP protein which is largely involved in synaptic function. FXS patients present several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and cognitive deficits. Autistic symptoms, e.g., altered social interaction and communication, are also often observed: FXS is indeed the most common monogenic cause of autism. Mouse models of FXS are therefore of great interest for research on both FXS and autistic pathologies. The Fmr1-KO2 mouse line is the most recent FXS model, widely used for brain studies; surprisingly, little is known about the face validity of this model, i.e., its FXS-like behavioral phenotype. Furthermore, no data are available for the age-related expression of the pathological phenotypes in this mouse line, a critical issue for modelling neurodevelopmental disorders. Here we performed an extensive behavioral characterization of the KO2 model at infancy, adolescent and adult ages. Hyperactivity, altered emotionality, sensory hyper-responsiveness and memory deficits were already present in KO mice at adolescence and remained evident at adulthood. Alterations in social behaviors were instead observed only in young KO animals: during the first 2 weeks of life, KOs emitted longer ultrasonic vocalizations compared to their WT littermates and as adolescents they displayed more aggressive behaviors towards a conspecific. These results strongly support the face validity of the KO2 mouse as a model for FXS, at the same time demonstrating that its ability to recapitulate social autistic-relevant phenotypes depends on early testing ages. Autism Res 2017, 10: 1584-1596. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Comportamento Animal , Síndrome do Cromossomo X Frágil/psicologia , Comportamento Social , Animais , Modelos Animais de Doenças , Feminino , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Masculino , Camundongos , Camundongos Knockout
18.
Autism Res ; 10(6): 1067-1078, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28301083

RESUMO

Fragile X syndrome (FXS) is a major developmental disorder and the most frequent monogenic cause of autism. Surprisingly, most existing studies on the Fmr1-KO mouse model for FXS have focused on males, although FX women, who are mostly heterozygous for the Fmr1 mutation, are known to exhibit several behavioral deficits, including autistic-like features. Furthermore, most animal research has been carried out on adults only; so that little is known about the age progression of the behavioral phenotype of Fmr1 mutants, which is a crucial issue to optimize the impact of therapeutic interventions. Here, we performed an extensive analysis of autistic-like social behaviors in heterozygous (HET) Fmr1-KO females and their WT littermates at different ages. No behavioral difference between HET and WT mice was observed at infancy, but some abnormalities in social interaction and communication were first detected at juvenile age. At adulthood some of these alterations disappeared, but avoidance of social novelty appeared, together with other FXS-relevant behavioral deficits, such as hyperactivity and reduced contextual fear response. Our data provide for the first time evidence for the presence of autistic-relevant behavioral abnormalities in Fmr1-HET female mice, demonstrating the utility of this mouse line to model autistic-like behaviors in both sexes. These results also highlight the importance of taking into account age differences when using the Fmr1-KO mouse model, suggesting that the early post-natal phases are the most promising target for preventive interventions and the adult age is the most appropriate to investigate the behavioral impact of potential therapies. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1067-1078. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Proteína do X Frágil da Deficiência Intelectual , Comportamento Social , Fatores Etários , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout
20.
Curr Top Behav Neurosci ; 30: 325-340, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26857461

RESUMO

Recent years have seen an impressive amount of research devoted to the developing of therapies to treat autism spectrum disorder (ASD). This work has been largely based on rodent models, employing a multitude of genetic and environmental manipulations. Unfortunately, the task of identifying suitable treatments for ASD is extremely challenging, due to a variety of problems specific to the research in this field. Here, we first discuss these problems, including (I) the presence of a large variety of rodent models (often without universal consensus on their validity), (II) the difficulties in choosing the most appropriate behavioural markers to assess the efficacy of possible treatments, (III) the limited knowledge we still have of the neurobiological bases of ASD pathology and of its aetiology, and (IV) the complexity of ASD itself, including a highly heterogeneous group of disorders sometimes with markedly different symptoms (therefore unlikely to be treated with the same approaches). Second, we give a critical overview of the most relevant advances in designing treatments for ASD, focusing on the most commonly used animal model, the laboratory mouse. We include pharmacological and non-pharmacological approaches, underlining their specific advantages, but also their current limitations especially in relation to the problems discussed before. Finally, we highlight the theoretical (e.g. the combination of multiple rather than single treatments) and methodological (e.g. use of single-gene mouse models) approaches that seem more promising to us, suggesting various strategies that can be adopted to simplify the complex field of research on treatments for ASD.


Assuntos
Transtorno do Espectro Autista/terapia , Modelos Animais de Doenças , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...