Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(19)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37835437

RESUMO

Osteosarcoma (OS) is the most common primary malignancy of the bone, highly aggressive and metastasizing, and it mainly affects children and adolescents. The current standard of care for OS is a combination of surgery and chemotherapy. However, these treatment options are not always successful, especially in cases of metastatic or recurrent osteosarcomas. For this reason, research into new therapeutic strategies is currently underway, and immunotherapies have received considerable attention. Mifamurtide stands out among the most studied immunostimulant drugs; nevertheless, there are very conflicting opinions on its therapeutic efficacy. Here, we aimed to investigate mifamurtide efficacy through in vitro and in vivo experiments. Our results led us to identify a new possible target useful to improve mifamurtide effectiveness on metastatic OS: the cytokine interleukin-10 (IL-10). We provide experimental evidence that the synergic use of an anti-IL-10 antibody in combination with mifamurtide causes a significantly increased mortality rate in highest-grade OS cells and lower metastasis in an in vivo model compared with mifamurtide alone. Overall, our data suggest that mifamurtide in combination with an anti-IL-10 antibody could be proposed as a new treatment protocol to be studied to improve the outcomes of OS patients.

2.
Cancers (Basel) ; 13(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298765

RESUMO

Metastatic melanoma is characterized by poor prognosis and a low free-survival rate. Thanks to their high plasticity, melanoma cells are able to migrate exploiting different cell motility strategies, such as the rounded/amoeboid-type motility and the elongated/mesenchymal-type motility. In particular, the amoeboid motility strongly contributes to the dissemination of highly invasive melanoma cells and no treatment targeting this process is currently available for clinical application. Here, we tested Claisened Hexafluoro as a novel inhibitor of the amoeboid motility. Reported data demonstrate that Claisened Hexafluoro specifically inhibits melanoma cells moving through amoeboid motility by deregulating mitochondrial activity and activating the AMPK signaling. Moreover, Claisened Hexafluoro is able to interfere with the adhesion abilities and the stemness features of melanoma cells, thus decreasing the in vivo metastatic process. This evidence may contribute to pave the way for future possible therapeutic applications of Claisened Hexafluoro to counteract metastatic melanoma dissemination.

3.
Cells ; 9(2)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102348

RESUMO

Sarcomas are rare and heterogeneous malignant tumors relatively resistant to radio- and chemotherapy. Sarcoma progression is deeply dependent on environmental conditions that sustain both cancer growth and invasive abilities. Sarcoma microenvironment is composed of different stromal cell types and extracellular proteins. In this context, cancer cells may cooperate or compete with stromal cells for metabolic nutrients to sustain their survival and to adapt to environmental changes. The strict interplay between stromal and sarcoma cells deeply affects the extracellular metabolic milieu, thus altering the behavior of both cancer cells and other non-tumor cells, including immune cells. Cancer cells are typically dependent on glucose fermentation for growth and lactate is one of the most heavily increased metabolites in the tumor bulk. Currently, lactate is no longer considered a waste product of the Warburg metabolism, but novel signaling molecules able to regulate the behavior of tumor cells, tumor-stroma interactions and the immune response. In this review, we illustrate the role of lactate in the strong acidity microenvironment of sarcoma. Really, in the biological context of sarcoma, where novel targeted therapies are needed to improve patient outcomes in combination with current therapies or as an alternative treatment, lactate targeting could be a promising approach to future clinical trials.


Assuntos
Ácido Láctico/metabolismo , Sarcoma/sangue , Progressão da Doença , Humanos , Microambiente Tumoral
4.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991773

RESUMO

Endo-, phyto- and synthetic cannabinoids have been proposed as promising anti-cancer agents able to impair cancer cells' behavior without affecting their non-transformed counterparts. However, cancer outcome depends not only on cancer cells' activity, but also on the stromal cells, which coevolve with cancer cells to sustain tumor progression. Here, we show for the first time that cannabinoid treatment impairs the activation and the reactivity of cancer-associated fibroblasts (CAFs), the most represented stromal component of prostate tumor microenvironment. Using prostate cancer-derived CAFs, we demonstrated that WIN 55-212.2 mesylate, a synthetic full agonist of cannabinoid receptors (CBs) 1 and 2, downregulates α-smooth muscle actin and matrix metalloprotease-2 expression, and it inhibits CAF migration, essential features to ensure the activated and reactive CAF phenotype. Furthermore, by impairing stromal reactivity, WIN 55-212.2 mesylate also negatively affects CAF-mediated cancer cells' invasiveness. Using selective antagonists of CBs, we proved that CAFs response to WIN 55-212.2 mesylate is mainly mediated by CB2. Finally, we suggest that endocannabinoids self-sustain both prostate tumor cells migration and CAFs phenotype by an autocrine loop. Overall, our data strongly support the use of cannabinoids as anti-tumor agents in prostate cancer, since they are able to simultaneously strike both cancer and stromal cells.


Assuntos
Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Canabinoides/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Androgênios/metabolismo , Benzoxazinas/farmacologia , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Humanos , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Fenótipo , Receptor CB2 de Canabinoide/metabolismo , Microambiente Tumoral/efeitos dos fármacos
5.
Curr Cancer Drug Targets ; 19(10): 807-816, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30648509

RESUMO

BACKGROUND: The bisphosphonate Zoledronic acid (ZA) is a potent osteoclast inhibitor currently used in the clinic to reduce osteoporosis and cancer-induced osteolysis. Moreover, ZA exerts an anti-tumor effect in several tumors. Despite this evidence, the relevance of ZA in prostate cancer (PCa) is not completely understood. OBJECTIVE: To investigate the effect of ZA administration on the invasive properties of PC3 cells, which are characterised by RhoA-dependent amoeboid motility. METHODS: The effect of ZA administration on the in vitro invasive properties of PC3 cells was evaluated by cell migration in 3D collagen matrices, immunofluorescence and Boyden assays or transendothelial migration. Lung retention and colonization assays were performed to assess the efficacy of ZA administration in vivo. RESULTS: PC3 cells are characterised by RhoA-dependent amoeboid motility. We now report a clear inhibition of in vitro PC3 cell invasion and RhoA activity upon ZA treatment. Moreover, to confirm a specific role of ZA in the inhibition of amoeboid motility of PC3 cells, we demonstrate that ZA interferes only partially with PC3 cells showing a mesenchymal phenotype due to both treatment with conditioned medium of cancer associated fibroblasts or to the acquisition of chemoresistance. Furthermore, we demonstrate that ZA impairs adhesion to endothelial cells and the trans-endothelial cell migration, two essential properties characterising amoeboid motility and PC3 metastatic dissemination. In vivo experiments prove the ability of ZA to inhibit the metastatic process of PC3 cells as shown by the decrease in lung colonization. CONCLUSION: This study demonstrates that ZA inhibits Rho-dependent amoeboid motility of PC3 cells, thus suggesting ZA as a potential therapy to impede the metastatic dissemination of PC3 cells.


Assuntos
Movimento Celular , Osteoclastos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Ácido Zoledrônico/farmacologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Conservadores da Densidade Óssea/farmacologia , Humanos , Masculino , Camundongos , Camundongos SCID , Células PC-3 , Neoplasias da Próstata/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/metabolismo
6.
J Cell Physiol ; 234(6): 8274-8285, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30378132

RESUMO

Cancer progression is strictly dependent on the relationship between tumor cells and the surrounding stroma, which supports cancer malignancy promoting several crucial steps of tumor progression, including the execution of the epithelial to mesenchymal transition (EMT) associated with enhancement in cell invasion, resistance to both anoikis and chemotherapeutic treatments. Recently it has been highlighted the central role of microRNAs (miRNAs) as regulators of tumor progression. Notably, in several tumors a strong deregulation of miRNAs is observed, supporting proliferation, invasion, and metabolic reprogramming of tumor cells. Here we demonstrated that cancer-associated fibroblasts induce a downregulation of miR-1247 in prostate cancer (PCa) cells. We proved that miR-1247 repression is functional for the achievement of EMT and increased cell invasion as well as stemness traits. These phenomena contribute to promote the metastatic potential of PCa cells as demonstrated by increased lung colonization in in vivo experiments. Moreover, as a consequence of miR-1247 downregulation, we observed a correlated increased expression level of neuropilin-1, a miR-1247 target involved as a coreceptor in the epidermal growth factor receptor signaling. Taken together, our data highlight miR-1247 as a potential target for molecular therapies aimed to block the progression and diffusion of PCa.


Assuntos
Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neuropilina-1/genética , Neoplasias da Próstata/genética , Proliferação de Células/genética , Reprogramação Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Neoplasias da Próstata/patologia , Células Estromais/metabolismo , Células Estromais/patologia
7.
Mol Oncol ; 12(5): 659-676, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29517849

RESUMO

There is growing evidence to suggest that bone marrow-derived mesenchymal stem cells (BM-MSCs) are key players in tumour stroma. Here, we investigated the cross-talk between BM-MSCs and osteosarcoma (OS) cells. We revealed a strong tropism of BM-MSCs towards these tumour cells and identified monocyte chemoattractant protein (MCP)-1, growth-regulated oncogene (GRO)-α and transforming growth factor (TGF)-ß1 as pivotal factors for BM-MSC chemotaxis. Once in contact with OS cells, BM-MSCs trans-differentiate into cancer-associated fibroblasts, further increasing MCP-1, GRO-α, interleukin (IL)-6 and IL-8 levels in the tumour microenvironment. These cytokines promote mesenchymal to amoeboid transition (MAT), driven by activation of the small GTPase RhoA, in OS cells, as illustrated by the in vitro assay and live imaging. The outcome is a significant increase of aggressiveness in OS cells in terms of motility, invasiveness and transendothelial migration. In keeping with their enhanced transendothelial migration abilities, OS cells stimulated by BM-MSCs also sustain migration, invasion and formation of the in vitro capillary network of endothelial cells. Thus, BM-MSC recruitment to the OS site and the consequent cytokine-induced MAT are crucial events in OS malignancy.


Assuntos
Células da Medula Óssea/patologia , Células-Tronco Mesenquimais/patologia , Osteossarcoma/patologia , Migração Transendotelial e Transepitelial , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
8.
Oncotarget ; 7(38): 61890-61904, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27542265

RESUMO

Drug resistance of cancer cells is recognized as the primary cause of failure of chemotherapeutic treatment in most human cancers. Growing evidences support the idea that deregulated cellular metabolism is linked to such resistance. Indeed, both components of the glycolytic and mitochondrial pathways are involved in altered metabolism linked to chemoresistance of several cancers. Here we investigated the drug-induced metabolic adaptations able to confer advantages to docetaxel resistant prostate cancer (PCa) cells. We found that docetaxel-resistant PC3 cells (PC3-DR) acquire a pro-invasive behavior undergoing epithelial-to-mesenchymal-transition (EMT) and a decrease of both intracellular ROS and cell growth. Metabolic analyses revealed that PC3-DR cells have a more efficient respiratory phenotype than sensitive cells, involving utilization of glucose, glutamine and lactate by the mitochondrial oxidative phosphorylation (OXPHOS). Consequently, targeting mitochondrial complex I by metformin administration, impairs proliferation and invasiveness of PC3-DR cells without effects on parental cells. Furthermore, stromal fibroblasts, which cause a "reverse Warburg" phenotype in PCa cells, reduce docetaxel toxicity in both sensitive and resistant PCa cells. However, re-expression of miR-205, a microRNA strongly down-regulated in EMT and associated to docetaxel resistance, is able to shift OXPHOS to a Warburg metabolism, thereby resulting in an elevated docetaxel toxicity in PCa cells. Taken together, these findings suggest that resistance to docetaxel induces a shift from Warburg to OXPHOS, mandatory for conferring a survival advantage to resistant cells, suggesting that impairing such metabolic reprogramming could be a successful therapeutic approach.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fosforilação Oxidativa , Neoplasias da Próstata/tratamento farmacológico , Taxoides/farmacologia , Apoptose , Linhagem Celular Tumoral , Técnicas de Cocultura , Docetaxel , Transição Epitelial-Mesenquimal , Fibroblastos/efeitos dos fármacos , Glucose/metabolismo , Glutamina/metabolismo , Glicólise , Humanos , Masculino , Mitocôndrias/metabolismo , NADP/metabolismo , Fenótipo , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Proteomics ; 15(1): 34-43, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25354928

RESUMO

Amino polystyrene nanospheres are shown to be efficient and controllable delivery devices, capable of transporting several bioactive cargoes. Recently, the design of a new device for prodrug activation, using these nanospheres with palladium encapsulated onto them, has been developed successfully. To study the influence of the cellular uptake of these nanodevices, we investigated the cellular response of human embryonic kidney cells (HEK-293T) and murine fibroblasts (L929) treated with empty or palladium-conjugated amino polystyrene nanospheres. To identify differentially expressed proteins, we performed an exhaustive proteomic analysis. In accordance with genomic data previously obtained, the uptake of the empty nanospheres did not induce significant variation in protein expression levels. Following the treatment with palladium-conjugated nanospheres, some changes in protein profiles in both cell lines were observed; these alterations affect proteins involved in cell metabolism and intracellular transport. No key regulator of the cell cycle result was differentially expressed after the treatment, confirming that these innovative drug delivery systems are harmless and well tolerated by the cells.


Assuntos
Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Nanosferas/metabolismo , Paládio/metabolismo , Poliestirenos/metabolismo , Proteínas/metabolismo , Aminação , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Fibroblastos/citologia , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Proteínas/análise , Proteômica
10.
Angiogenesis ; 17(4): 881-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24903490

RESUMO

Angiopoietin-like (ANGPTL) proteins are secreted proteins showing structural similarity to members of the angiopoietin family. Some ANGPTL proteins possess pleiotropic activities, being involved in cancer lipid, glucose energy metabolisms, and angiogenesis. ANGPTL7 is the less characterized member of the family whose functional role is only marginally known. In this study, we provide experimental evidences that ANGPTL7 is over-expressed in different human cancers. To understand the role played by ANGPTL7 in tumor biology, we asked whether ANGPTL7 is endogenously expressed by malignant cells or in response to environmental stimuli. We found that ANGPTL7 is marginally expressed under standard growth condition while it is specifically up-regulated by hypoxia. Interestingly, the protein is secreted and partially associated with the exosomal fraction, suggesting that it could be found in the systemic circulation of oncologic patients and act in an endocrine way. Moreover, we found that ANGPTL7 exerts a pro-angiogenetic effect on human differentiated endothelial cells by stimulating their proliferation, motility, invasiveness, and capability to form capillary-like networks while it does not stimulate progenitor endothelial cells. Finally, we showed that ANGPTL7 promotes vascularization in vivo in the mouse Matrigel sponge assay, thereby accrediting this molecule as a pro-angiogenic factor.


Assuntos
Angiopoietinas/metabolismo , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/metabolismo , Proteína 7 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Diferenciação Celular , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Meios de Cultivo Condicionados/química , Sistema Endócrino , Células Endoteliais/citologia , Exossomos/metabolismo , Humanos , Imuno-Histoquímica , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Regulação para Cima
11.
Proteomics Clin Appl ; 8(7-8): 595-602, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920555

RESUMO

PURPOSE: Extracellular proteins are easily accessible, which presents a subproteome of molecular targets that have high diagnostic and therapeutic potential. Efforts have been made to catalog the cardiac extracellular matridome and analyze the topology of identified proteins for the design of therapeutic targets. Although many bioinformatics tools have been developed to predict protein topology, topology has been experimentally validated for only a very small portion of membrane proteins. The aim of this study was to use a glycoproteomics and MS approach to identify glycoproteins in the extracellular matridome of the infarcted left ventricle (LV) and provide experimental evidence for topological determination. EXPERIMENTAL DESIGN: Glycoproteomics analysis was performed on eight biological replicates of LV samples from wild-type mice at 7 days following myocardial infarction using SPE of glycopeptides, followed by mass spectrometric identification of N-linked glycosylation sites for topology assessment. RESULTS: We identified hundreds of glycoproteins, and the identified N-glycosylation sites provide novel information on the correct topology for membrane proteins present in the infarct setting. CONCLUSIONS AND CLINICAL RELEVANCE: Our data provide the foundation for future studies of the LV infarct extracellular matridome, which may facilitate the discovery of drug targets and biomarkers.


Assuntos
Membrana Celular/metabolismo , Espaço Extracelular/metabolismo , Glicoproteínas/metabolismo , Ventrículos do Coração/metabolismo , Proteômica , Animais , Sítios de Ligação , Feminino , Glicosilação , Ventrículos do Coração/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia
12.
PLoS One ; 8(8): e71839, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967250

RESUMO

Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE) on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL) and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS) production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.


Assuntos
Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Carbonilação Proteica , Proteoma , Proteômica , Animais , Peroxidação de Lipídeos , Masculino , Espectrometria de Massas , Proteínas Musculares/metabolismo , Proteômica/métodos , Ratos , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...