Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nat Commun ; 15(1): 3740, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702347

RESUMO

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Assuntos
Células Acinares , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animais , Células Secretoras de Insulina/metabolismo , Camundongos , Células Acinares/metabolismo , Masculino , Insulina/metabolismo , Transdiferenciação Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Ilhotas Pancreáticas/metabolismo
2.
Front Immunol ; 14: 1231700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744380

RESUMO

Introduction: We have previously demonstrated that a pathologic downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α) within the intestinal epithelium contributes to the pathogenesis of inflammatory bowel disease (IBD). However, the mechanism underlying downregulation of PGC1α expression and activity during IBD is not yet clear. Methods: Mice (male; C57Bl/6, Villincre/+;Pgc1afl/fl mice, and Pgc1afl/fl) were subjected to experimental colitis and treated with nicotinamide riboside. Western blot, high-resolution respirometry, nicotinamide adenine dinucleotide (NAD+) quantification, and immunoprecipitation were used to in this study. Results: We demonstrate a significant depletion in the NAD+ levels within the intestinal epithelium of mice undergoing experimental colitis, as well as humans with ulcerative colitis. While we found no decrease in the levels of NAD+-synthesizing enzymes within the intestinal epithelium of mice undergoing experimental colitis, we did find an increase in the mRNA level, as well as the enzymatic activity, of the NAD+-consuming enzyme poly(ADP-ribose) polymerase-1 (PARP1). Treatment of mice undergoing experimental colitis with an NAD+ precursor reduced the severity of colitis, restored mitochondrial function, and increased active PGC1α levels; however, NAD+ repletion did not benefit transgenic mice that lack PGC1α within the intestinal epithelium, suggesting that the therapeutic effects require an intact PGC1α axis. Discussion: Our results emphasize the importance of PGC1α expression to both mitochondrial health and homeostasis within the intestinal epithelium and suggest a novel therapeutic approach for disease management. These findings also provide a mechanistic basis for clinical trials of nicotinamide riboside in IBD patients.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Masculino , Animais , Camundongos , NAD , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Transgênicos , Mitocôndrias , Inflamação
3.
Front Immunol ; 14: 1290058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164129

RESUMO

Type 1 diabetes (T1D) affects three million Americans, with 80 new people diagnosed each day. T1D is currently uncurable and there is an urgent need to develop additional drug candidates to achieve the prevention of T1D. We propose AZD6738 (ATRi), an orally available drug currently in phases I and II of clinical trials for various cancers, as a novel candidate to prevent T1D. Based on previously reported findings of ATRi inducing cell death in rapidly proliferating T cells, we hypothesized that this drug would specifically affect self-antigen activated diabetogenic T cells. These cells, if left unchecked, could otherwise lead to the destruction of pancreatic ß cells, contributing to the development of T1D. This work demonstrates that increasing the duration of ATRi treatment provides extended protection against T1D onset. Remarkably, 5-week ATRi treatment prevented T1D in a robust adoptive transfer mouse model. Furthermore, the splenocytes of animals that received 5-week ATRi treatment did not transfer immune-mediated diabetes, while the splenocytes from control animal transferred the disease in 10 days. This work shows that ATRi prevents T1D by specifically inducing cell death in self-antigen activated, highly proliferative diabetogenic T cells through the induction of DNA damage, resulting in the inhibition of IFNγ production and proliferation. These findings support the consideration of repurposing ATRi for T1D prevention.


Assuntos
Antineoplásicos , Diabetes Mellitus Tipo 1 , Neoplasias , Animais , Camundongos , Humanos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/prevenção & controle , Indóis , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autoantígenos
4.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36017799

RESUMO

Signals from the endothelium play a pivotal role in pancreatic lineage commitment. As such, the fate of the epithelial cells relies heavily on the spatiotemporal recruitment of the endothelial cells to the embryonic pancreas. Although it is known that VEGFA secreted by the epithelium recruits the endothelial cells to the specific domains within the developing pancreas, the mechanism that controls the timing of such recruitment is poorly understood. Here, we have assessed the role of focal adhesion kinase (FAK) in mouse pancreatic development based on our observation that the presence of the enzymatically active form of FAK (pFAK) in the epithelial cells is inversely correlated with vessel recruitment. To study the role of FAK in the pancreas, we conditionally deleted the gene encoding focal adhesion kinase in the developing mouse pancreas. We found that homozygous deletion of Fak (Ptk2) during embryogenesis resulted in ectopic epithelial expression of VEGFA, abnormal endothelial recruitment and a delay in endocrine and acinar cell differentiation. The heterozygous mutants were born with no pancreatic phenotype but displayed gradual acinar atrophy due to cell polarity defects in exocrine cells. Together, our findings imply a role for FAK in controlling the timing of pancreatic lineage commitment and/or differentiation in the embryonic pancreas by preventing endothelial recruitment to the embryonic pancreatic epithelium.


Assuntos
Células Endoteliais , Animais , Diferenciação Celular/genética , Proteína-Tirosina Quinases de Adesão Focal , Homozigoto , Camundongos , Deleção de Sequência
6.
Front Immunol ; 12: 669456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163475

RESUMO

In Type 1 Diabetes (T1D), CD4+ T cells initiate autoimmune attack of pancreatic islet ß cells. Importantly, bioenergetic programs dictate T cell function, with specific pathways required for progression through the T cell lifecycle. During activation, CD4+ T cells undergo metabolic reprogramming to the less efficient aerobic glycolysis, similarly to highly proliferative cancer cells. In an effort to limit tumor growth in cancer, use of glycolytic inhibitors have been successfully employed in preclinical and clinical studies. This strategy has also been utilized to suppress T cell responses in autoimmune diseases like Systemic Lupus Erythematosus (SLE), Multiple Sclerosis (MS), and Rheumatoid Arthritis (RA). However, modulating T cell metabolism in the context of T1D has remained an understudied therapeutic opportunity. In this study, we utilized the small molecule PFK15, a competitive inhibitor of the rate limiting glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 3 (PFKFB3). Our results confirmed PFK15 inhibited glycolysis utilization by diabetogenic CD4+ T cells and reduced T cell responses to ß cell antigen in vitro. In an adoptive transfer model of T1D, PFK15 treatment delayed diabetes onset, with 57% of animals remaining euglycemic at the end of the study period. Protection was due to induction of a hyporesponsive T cell phenotype, characterized by increased and sustained expression of the checkpoint molecules PD-1 and LAG-3 and downstream functional and metabolic exhaustion. Glycolysis inhibition terminally exhausted diabetogenic CD4+ T cells, which was irreversible through restimulation or checkpoint blockade in vitro and in vivo. In sum, our results demonstrate a novel therapeutic strategy to control aberrant T cell responses by exploiting the metabolic reprogramming of these cells during T1D. Moreover, the data presented here highlight a key role for nutrient availability in fueling T cell function and has implications in our understanding of T cell biology in chronic infection, cancer, and autoimmunity.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Fosfofrutoquinase-2/antagonistas & inibidores , Piridinas/farmacologia , Quinolinas/farmacologia , Transferência Adotiva , Animais , Antígenos CD/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Fosfofrutoquinase-2/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Fatores de Tempo , Proteína do Gene 3 de Ativação de Linfócitos
7.
Curr Diab Rep ; 21(3): 9, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547977

RESUMO

PURPOSE OF REVIEW: Type 1 diabetes (T1D) can be managed by insulin replacement, but it is still associated with an increased risk of microvascular/cardiovascular complications. There is considerable interest in antigen-specific approaches for treating T1D due to their potential for a favorable risk-benefit ratio relative to non-specific immune-based treatments. Here we review recent antigen-specific tolerance approaches using auto-antigen and/or immunomodulatory agents in NOD mice and provide insight into seemingly contradictory findings. RECENT FINDINGS: Although delivery of auto-antigen alone can prevent T1D in NOD mice, this approach may be prone to inconsistent results and has not demonstrated an ability to reverse established T1D. Conversely, several approaches that promote presentation of auto-antigen in a tolerogenic context through cell/tissue targeting, delivery system properties, or the delivery of immunomodulatory agents have had success in reversing recent-onset T1D in NOD mice. While initial auto-antigen based approaches were unable to substantially influence T1D progression clinically, recent antigen-specific approaches have promising potential.


Assuntos
Diabetes Mellitus Tipo 1 , Tolerância Imunológica , Animais , Antígenos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Insulina , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Reguladores
8.
PLoS One ; 15(9): e0239396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32966314

RESUMO

Despite recent progress in the treatment of rheumatoid arthritis (RA), many patients still fail to achieve remission or low disease activity. An imbalance between auto-reactive effector T cells (Teff) and regulatory T cells (Treg) may contribute to joint inflammation and damage in RA. Therefore, restoring this balance is a promising approach for the treatment of inflammatory arthritis. Accordingly, our group has previously shown that the combination of TGF-ß-releasing microparticles (MP), rapamycin-releasing MP, and IL-2-releasing MP (TRI MP) can effectively increase the ratio of Tregs to Teff in vivo and provide disease protection in several preclinical models. In this study TRI MP was evaluated in the collagen-induced arthritis (CIA) model. Although this formulation has been tested previously in models of destructive inflammation and transplantation, this is the first model of autoimmunity for which this therapy has been applied. In this context, TRI MP effectively reduced arthritis incidence, the severity of arthritis scores, and bone erosion. The proposed mechanism of action includes not only reducing CD4+ T cell proliferation, but also expanding a regulatory population in the periphery soon after TRI MP administration. These changes were reflected in the CD4+ T cell population that infiltrated the paws at the onset of arthritis and were associated with a reduction of immune infiltrate and inflammatory myeloid cells in the paws. TRI MP administration also reduced the titer of collagen antibodies, however the contribution of this reduced titer to disease protection remains uncertain since there was no correlation between collagen antibody titer and arthritis score.


Assuntos
Artrite Experimental/prevenção & controle , Interleucina-2/farmacologia , Microesferas , Sirolimo/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Autoanticorpos/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Contagem de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Interleucina-2/química , Masculino , Camundongos , Sirolimo/química , Fator de Crescimento Transformador beta/química
9.
Front Endocrinol (Lausanne) ; 11: 624590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679609

RESUMO

Due to their secretory function, ß cells are predisposed to higher levels of endoplasmic reticulum (ER) stress and greater sensitivity to inflammation than other cell types. These stresses elicit changes in ß cells that alter their function and immunogenicity, including defective ribosomal initiation, post-translational modifications (PTMs) of endogenous ß cell proteins, and alternative splicing. Multiple published reports confirm the presence of not only CD8+ T cells, but also autoreactive CD4+ T cells within pancreatic islets. Although the specificities of T cells that infiltrate human islets are incompletely characterized, they have been confirmed to include neo-epitopes that are formed through stress-related enzymatic modifications of ß cell proteins. This article summarizes emerging knowledge about stress-induced changes in ß cells and data supporting a role for neo-antigen formation and cross-talk between immune cells and ß cells that provokes autoimmune attack - leading to a breakdown in tissue-specific tolerance in subjects who develop type 1 diabetes.


Assuntos
Linfócitos B/imunologia , Linfócitos B/patologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Epitopos de Linfócito B/imunologia , Estresse Oxidativo/imunologia , Animais , Humanos , Processamento de Proteína Pós-Traducional/imunologia
10.
Am J Pathol ; 189(7): 1413-1422, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31054988

RESUMO

Obesity is a major risk factor for type 2 diabetes because of chronic hepatic inflammation and resultant insulin resistance. Hepatocyte growth factor (HGF) is responsible for resetting hepatic homeostasis after injury following activation by urokinase-type plasminogen activator (u-PA; encoded by the PLAU gene). Plasminogen activator inhibitor type-1 (PAI-1; encoded by the SERPINE1 gene), a u-PA inhibitor and antifibrinolytic agent, is often elevated in obesity and is linked to cardiovascular events. We hypothesized that, in addition to its role in preventing fibrinolysis, elevated PAI-1 inhibits HGF's activation by u-PA and the resultant anti-inflammatory and hepatoprotective properties. Wild-type and PAI-1 knockout (KO) mice on a high-fat diet both became significantly heavier than lean controls; however, the obese KO mice demonstrated improved glucose metabolism compared with wild-type mice. Obese KO mice also exhibited an increase in conversion of latent single-chain HGF to active two-chain HGF, coinciding with an increase in the phosphorylation of the HGF receptor (HGFR or MET, encoded by the MET gene), as well as dampened inflammation. These results strongly suggest that, in addition to its other functions, PAI-mediated inhibition of HGF activation prohibits the resolution of inflammation in the context of obesity-induced type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Animais , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Inibidor 1 de Ativador de Plasminogênio/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
11.
Cell Rep ; 27(1): 129-141.e4, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30943396

RESUMO

Lymphocyte activation gene-3 (LAG-3) is an inhibitory receptor expressed by CD4+ T cells and tempers their homeostatic expansion. Because CD4+ T cell proliferation is tightly coupled to bioenergetics, we investigate the role of LAG-3 in modulating naive CD4+ T cell metabolism. LAG-3 deficiency enhances the metabolic profile of naive CD4+ T cells by elevating levels of mitochondrial biogenesis. In vivo, LAG-3 blockade partially restores expansion and the metabolic phenotype of wild-type CD4+ T cells to levels of Lag3-/- CD4+ T cells, solidifying that LAG-3 controls these processes. Lag3-/- CD4+ T cells also demonstrate greater signal transducer and activator of transcription 5 (STAT5) activation, enabling resistance to interleukin-7 (IL-7) deprivation. These results implicate this pathway as a target of LAG-3-mediated inhibition. Additionally, enhancement of STAT5 activation, as a result of LAG-3 deficiency, contributes to greater activation potential in these cells. These results identify an additional mode of regulation elicited by LAG-3 in controlling CD4+ T cell responses.


Assuntos
Antígenos CD/fisiologia , Linfócitos T CD4-Positivos , Metabolismo Energético/genética , Mitocôndrias/fisiologia , Biogênese de Organelas , Animais , Antígenos CD/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/ultraestrutura , Células Cultivadas , Feminino , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fase de Repouso do Ciclo Celular/genética , Proteína do Gene 3 de Ativação de Linfócitos
12.
Shock ; 51(4): 526-534, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30080745

RESUMO

The role of dietary fiber in chronic inflammatory disorders has been explored, but very little is known about its benefits in acute inflammation. Previously, we have demonstrated that dietary cellulose supplementation confers protection in a murine model of sepsis by promoting the growth of the gut microbiota that are linked to metabolic health. The survival benefit is associated with a decrease in serum concentration of proinflammatory cytokines, reduced neutrophil infiltration in the lungs, and diminished hepatic inflammation. Here, we aim to understand if the benefit of manipulating the gut microbiome exerts a broader "systemic" influence on the immune system in a lethal murine endotoxemia model. We hypothesize that mice-fed high-fiber cellulose (HF) diet will demonstrate a reduction in activated macrophages and dendritic cells (DCs) and a concomitant increase in the suppressive capacity of T-regulatory cells (Tregs) toward T cells responsiveness. We characterized the immunological profile and activation status of macrophages, DCs, and T cells in mice on HF diet that were then subjected to endotoxemia. Supplementation with HF diet decreased the number and activation of splenic macrophages and DCs in mice after LPS administration. Similarly, HF diet amplified the suppressive function of Tregs and induced anergy in T cells as compared with mice on a regular diet. Our data suggest that the use of HF diet can be a simple, yet effective tool that decreases the hepatic DNA-binding activity of NF-κB leading to a reduction in proinflammatory cytokine response in a murine endotoxemia model.


Assuntos
Endotoxemia/tratamento farmacológico , Endotoxemia/imunologia , NF-kappa B/metabolismo , RNA Ribossômico 16S/genética , Animais , Western Blotting , Celulose , Quimiocinas/sangue , Citocinas/sangue , Dieta Hiperlipídica , Suplementos Nutricionais , Endotoxemia/sangue , Citometria de Fluxo , Microbioma Gastrointestinal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
13.
FASEB J ; 33(1): 1330-1346, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113881

RESUMO

The incidence and prevalence of inflammatory bowel disease (IBD) are increasing worldwide. IBD is known to be multifactorial, but inflammatory signaling within the intestinal epithelium and a subsequent failure of the intestinal epithelial barrier have been shown to play essential roles in disease pathogenesis. CaMKIV is a multifunctional protein kinase associated with inflammation and cell cycle regulation. CaMKIV has been extensively studied in autoimmune diseases, but a role in idiopathic intestinal inflammation has not been described. In this study, active CaMKIV was highly expressed within the intestinal epithelium of humans with ulcerative colitis and wild-type (WT) mice with experimental induced colitis. Clinical disease severity directly correlates with CaMKIV activation, as does expression of proinflammatory cytokines and histologic features of colitis. In WT mice, CaMKIV activation is associated with increases in expression of 2 cell cycle proarrest signals: p53 and p21. Cell cycle arrest inhibits proliferation of the intestinal epithelium and ultimately results in compromised intestinal epithelial barrier integrity, further perpetuating intestinal inflammation during experimental colitis. Using a CaMKIV null mutant mouse, we demonstrate that a loss of CaMKIV protects against murine DSS colitis. Small molecules targeting CaMKIV activation may provide therapeutic benefit for patients with IBD.-Cunningham, K. E., Novak, E. A., Vincent, G., Siow, V. S., Griffith, B. D., Ranganathan, S., Rosengart, M. R., Piganelli, J. D., Mollen, K. P. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) activation contributes to the pathogenesis of experimental colitis via inhibition of intestinal epithelial cell proliferation.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células , Colite/enzimologia , Colite/patologia , Mucosa Intestinal/patologia , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Colite/induzido quimicamente , Colite Ulcerativa/enzimologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sulfato de Dextrana/toxicidade , Ativação Enzimática , Humanos , Mucosa Intestinal/enzimologia , Camundongos , Camundongos Knockout , Transdução de Sinais
14.
Diabetes ; 67(11): 2337-2348, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30348823

RESUMO

The ß-cell has become recognized as a central player in the pathogenesis of type 1 diabetes with the generation of neoantigens as potential triggers for breaking immune tolerance. We report that posttranslationally modified glucose-regulated protein 78 (GRP78) is a novel autoantigen in human type 1 diabetes. When human islets were exposed to inflammatory stress induced by interleukin-1ß, tumor necrosis factor-α, and interferon-γ, arginine residue R510 within GRP78 was converted into citrulline, as evidenced by liquid chromatography-tandem mass spectrometry. This conversion, known as citrullination, led to the generation of neoepitopes, which effectively could be presented by HLA-DRB1*04:01 molecules. With the use of HLA-DRB1*04:01 tetramers and ELISA techniques, we demonstrate enhanced antigenicity of citrullinated GRP78 with significantly increased CD4+ T-cell responses and autoantibody titers in patients with type 1 diabetes compared with healthy control subjects. Of note, patients with type 1 diabetes had a predominantly higher percentage of central memory cells and a lower percentage of effector memory cells directed against citrullinated GRP78 compared with the native epitope. These results strongly suggest that citrullination of ß-cell proteins, exemplified here by the citrullination of GRP78, contributes to loss of self-tolerance toward ß-cells in human type 1 diabetes, indicating that ß-cells actively participate in their own demise.


Assuntos
Autoantígenos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteínas de Choque Térmico/metabolismo , Inflamação/metabolismo , Ilhotas Pancreáticas/metabolismo , Autoantígenos/imunologia , Citrulinação , Citocinas/farmacologia , Diabetes Mellitus Tipo 1/imunologia , Chaperona BiP do Retículo Endoplasmático , Humanos , Inflamação/imunologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia
16.
Front Immunol ; 9: 1802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127787

RESUMO

T cells are considered autoimmune effectors in juvenile idiopathic arthritis (JIA), but the antigenic cause of arthritis remains elusive. Since T cells comprise a significant proportion of joint-infiltrating cells, we examined whether the environment in the joint could be shaped through the inflammatory activation by T cells that is independent of conventional TCR signaling. We focused on the analysis of synovial fluid (SF) collected from children with oligoarticular and rheumatoid factor-negative polyarticular JIA. Cytokine profiling of SF showed dominance of five molecules including IL-17A. Cytometric analysis of the same SF samples showed enrichment of αßT cells that lacked both CD4 and CD8 co-receptors [herein called double negative (DN) T cells] and also lacked the CD28 costimulatory receptor. However, these synovial αßT cells expressed high levels of CD31, an adhesion molecule that is normally employed by granulocytes when they transit to sites of injury. In receptor crosslinking assays, ligation of CD31 alone on synovial CD28nullCD31+ DN αßT cells effectively and sufficiently induced phosphorylation of signaling substrates and increased intracytoplasmic stores of cytokines including IL-17A. CD31 ligation was also sufficient to induce RORγT expression and trans-activation of the IL-17A promoter. In addition to T cells, SF contained fibrocyte-like cells (FLC) expressing IL-17 receptor A (IL-17RA) and CD38, a known ligand for CD31. Stimulation of FLC with IL-17A led to CD38 upregulation, and to production of cytokines and tissue-destructive molecules. Addition of an oxidoreductase analog to the bioassays suppressed the CD31-driven IL-17A production by T cells. It also suppressed the downstream IL-17A-mediated production of effectors by FLC. The levels of suppression of FLC effector activities by the oxidoreductase analog were comparable to those seen with corticosteroid and/or biologic inhibitors to IL-6 and TNFα. Collectively, our data suggest that activation of a CD31-driven, αßTCR-independent, IL-17A-mediated T cell-FLC inflammatory circuit drives and/or perpetuates synovitis. With the notable finding that the oxidoreductase mimic suppresses the effector activities of synovial CD31+CD28null αßT cells and IL-17RA+CD38+ FLC, this small molecule could be used to probe further the intricacies of this inflammatory circuit. Such bioactivities of this small molecule also provide rationale for new translational avenue(s) to potentially modulate JIA synovitis.


Assuntos
Artrite Juvenil/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Sinovite/imunologia , Linfócitos T/imunologia , Antígenos CD28 , Criança , Estudos de Coortes , Citocinas/metabolismo , Feminino , Humanos , Interleucina-17/genética , Masculino , Metaloporfirinas/farmacologia , Oxirredutases/metabolismo , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Subpopulações de Linfócitos T/imunologia
17.
Diabetes ; 67(7): 1356-1368, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654212

RESUMO

In spite of tolerance mechanisms, some individuals develop T-cell-mediated autoimmunity. Posttranslational modifications that increase the affinity of epitope presentation and/or recognition represent one means through which self-tolerance mechanisms can be circumvented. We investigated T-cell recognition of peptides that correspond to modified ß-cell antigens in subjects with type 1 diabetes. Modified peptides elicited enhanced proliferation by autoreactive T-cell clones. Endoplasmic reticulum (ER) stress in insulinoma cells increased cytosolic calcium and the activity of tissue transglutaminase 2 (tTG2). Furthermore, stressed human islets and insulinomas elicited effector responses from T cells specific for modified peptides, suggesting that ER stress-derived tTG2 activity generated deamidated neoepitopes that autoreactive T cells recognized. Patients with type 1 diabetes had large numbers of T cells specific for these epitopes in their peripheral blood. T cells with these specificities were also isolated from the pancreatic draining lymph nodes of cadaveric donors with established diabetes. Together, these results suggest that self-antigens are enzymatically modified in ß-cells during ER stress, giving rise to modified epitopes that could serve to initiate autoimmunity or to further broaden the antigenic repertoire, activating potentially pathogenic CD4+ T cells that may not be effectively eliminated by negative selection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Estresse do Retículo Endoplasmático/fisiologia , Epitopos de Linfócito T/metabolismo , Células Secretoras de Insulina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Apresentação de Antígeno , Autoantígenos/imunologia , Autoimunidade/imunologia , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Ativação Enzimática , Epitopos de Linfócito T/imunologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Insetos , Células Secretoras de Insulina/imunologia , Proteína 2 Glutamina gama-Glutamiltransferase , Processamento de Proteína Pós-Traducional/fisiologia , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas/metabolismo , Transglutaminases/metabolismo
18.
Am J Transplant ; 18(8): 1879-1889, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29464912

RESUMO

Islet transplantation has become a well-established therapy for select patients with type 1 diabetes. Viability and engraftment can be compromised by the generation of oxidative stress encountered during isolation and culture. We evaluated whether the administration of BMX-001 (MnTnBuOE-2-PyP5+ [Mn(III) meso-tetrakis-(N-b-butoxyethylpyridinium-2-yl)porphyrin]) and its earlier derivative, BMX-010 (MnTE-2-PyP [Mn(III) meso-tetrakis-(N-methylpyridinium-2-yl)porphyrin]) could improve islet function and engraftment outcomes. Long-term culture of human islets with BMX-001, but not BMX-010, exhibited preserved in vitro viability. Murine islets isolated and cultured for 24 hours with 34 µmol/L BMX-001 exhibited improved insulin secretion (n = 3 isolations, P < .05) in response to glucose relative to control islets. In addition, 34 µmol/L BMX-001-supplemented murine islets exhibited significantly reduced apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling, compared with nontreated control islets (P < .05). Murine syngeneic islets transplanted under the kidney capsule at a marginal dose of 150 islets revealed 58% of 34 µmol/L BMX-001-treated islet recipients became euglycemic (n = 11 of 19) compared with 19% of nontreated control islet recipients (n = 3 of 19, P < .05). Of murine recipients receiving a marginal dose of human islets cultured with 34 µmol/L BMX-001, 92% (n = 12 of 13) achieved euglycemia compared with 57% of control recipients (n = 8 of 14, P = .11). These results demonstrate that the administration of BMX-001 enhances in vitro viability and augments murine marginal islet mass engraftment.


Assuntos
Apoptose/efeitos dos fármacos , Materiais Biomiméticos/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Ilhotas Pancreáticas/efeitos dos fármacos , Metaloporfirinas/farmacologia , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glucose/farmacologia , Sobrevivência de Enxerto , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Superóxido Dismutase/metabolismo
19.
Cell Stem Cell ; 22(1): 78-90.e4, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304344

RESUMO

Successful strategies for treating type 1 diabetes need to restore the function of pancreatic beta cells that are destroyed by the immune system and overcome further destruction of insulin-producing cells. Here, we infused adeno-associated virus carrying Pdx1 and MafA expression cassettes through the pancreatic duct to reprogram alpha cells into functional beta cells and normalized blood glucose in both beta cell-toxin-induced diabetic mice and in autoimmune non-obese diabetic (NOD) mice. The euglycemia in toxin-induced diabetic mice and new insulin+ cells persisted in the autoimmune NOD mice for 4 months prior to reestablishment of autoimmune diabetes. This gene therapy strategy also induced alpha to beta cell conversion in toxin-treated human islets, which restored blood glucose levels in NOD/SCID mice upon transplantation. Hence, this strategy could represent a new therapeutic approach, perhaps complemented by immunosuppression, to bolster endogenous insulin production. Our study thus provides a potential basis for further investigation in human type 1 diabetes.


Assuntos
Reprogramação Celular , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Terapia Genética , Células Secretoras de Glucagon/patologia , Células Secretoras de Insulina/patologia , Aloxano , Animais , Glicemia , Dependovirus/metabolismo , Perfilação da Expressão Gênica , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperglicemia/complicações , Hiperglicemia/patologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Lectinas Tipo C , Camundongos Endogâmicos C57BL , Camundongos SCID , Receptores Imunológicos/metabolismo , Transativadores/metabolismo
20.
Antioxid Redox Signal ; 29(14): 1399-1414, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28990401

RESUMO

SIGNIFICANCE: Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4+ T cell activation and differentiation. As CD4+ T cells are a significant contributor to pancreatic ß cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4+ T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and ß cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4+ T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4+ T cells have been done to examine the influence of redox on CD4+ T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4+ T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4+ T cell formation and function.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...