Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 15(1): 187, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655262

RESUMO

BACKGROUND: Changes in host phenotype following parasite infection are often considered as host manipulation when they seem advantageous for the parasite. However, putative cases of host manipulation by parasites are rarely tested in field-realistic conditions. Infection-induced phenotypic change cannot be conclusively considered as host manipulation if no evidence shows that this trait is adaptive for the parasite in the wild. Plasmodium sp., the parasites causing malaria in vertebrates, are hypothesized to "manipulate" their host by making their odour more attractive to mosquitoes, their vector and final host. While this is fairly well supported by studies on mice and humans, studies focusing on avian malaria give contradictory results. METHODS: In the present study, genotyped birds at different stages (uninfected, acute and chronic) of Plasmodium relictum infection were exposed, in a large outdoor aviary, to their natural vector, the mosquito Culex pipiens. RESULTS: After genotyping the blood meals of more than 650 mosquitoes, we found that mosquitoes did not bite infected birds more than they bit them before infection, nor more than they bit uninfected hosts. CONCLUSIONS: Our study highlights the importance of testing ecological behaviours under natural conditions and suggests that different processes might be at play in mammals and birds regarding potential manipulation of attractiveness by malaria parasites.


Assuntos
Aves , Mordeduras e Picadas , Culicidae , Malária Aviária , Animais , Aves/parasitologia , Mordeduras e Picadas/veterinária , Mosquitos Vetores
2.
Int J Parasitol ; 52(9): 617-627, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760376

RESUMO

Understanding the drivers of infection risk helps us to detect the most at-risk species in a community and identify species whose intrinsic characteristics could act as potential reservoirs of pathogens. This knowledge is crucial if we are to predict the emergence and evolution of infectious diseases. To date, most studies have only focused on infections caused by a single parasite, leaving out co-infections. Yet, co-infections are of paramount importance in understanding the ecology and evolution of host-parasite interactions due to the wide range of effects they can have on host fitness and on the evolutionary trajectories of parasites. Here, we used a multinomial Bayesian phylogenetic modelling framework to explore the extent to which bird ecology and phylogeny impact the probability of being infected by one genus (hereafter single infection) or by multiple genera (hereafter co-infection) of haemosporidian parasites. We show that while nesting and migration behaviours influenced both the probability of being single- and co-infected, species position along the slow-fast life-history continuum and geographic range size were only pertinent in explaining variation in co-infection risk. We also found evidence for a phylogenetic conservatism regarding both single- and co-infections, indicating that phylogenetically related bird species tend to have similar infection patterns. This phylogenetic signal was four times stronger for co-infections than for single infections, suggesting that co-infections may act as a stronger selective pressure than single infections. Overall, our study underscores the combined influence of hosts' evolutionary history and attributes in determining infection risk in avian host communities. These results also suggest that co-infection risk might be under stronger deterministic control than single infection risk, potentially paving the way toward a better understanding of the emergence and evolution of infectious diseases.


Assuntos
Doenças das Aves , Coinfecção , Doenças Transmissíveis , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Teorema de Bayes , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves/parasitologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Haemosporida/genética , Filogenia , Prevalência , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
3.
Insects ; 12(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34680682

RESUMO

Vector mosquitoes contribute significantly to the global burden of diseases in humans, livestock and wildlife. As such, the spatial distribution and abundance of mosquito species and their surveillance cannot be ignored. Here, we surveyed mosquito species across major tourism hotspots in semi-arid Botswana, including, for the first time, the Central Kalahari Game Reserve. Our results reported several mosquito species across seven genera, belonging to Aedes, Anopheles, Culex, Mansonia, Mimomyia, Coquillettidia and Uranotaenia. These results document a significant species inventory that may inform early warning vector-borne disease control systems and likely help manage the risk of emerging and re-emerging mosquito-borne infections.

4.
Genomics ; 113(4): 2327-2337, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023365

RESUMO

The malaria parasite Plasmodium relictum is one of the most widespread species of avian malaria. As in the case of its human counterparts, bird Plasmodium undergoes a complex life cycle infecting two hosts: the arthropod vector and the vertebrate host. In this study, we examined transcriptomes of P. relictum (SGS1) during crucial timepoints within its vector, Culex pipiens quinquefasciatus. Differential gene-expression analyses identified genes linked to the parasites life-stages at: i) a few minutes after the blood meal is ingested, ii) during peak oocyst production phase, iii) during peak sporozoite phase and iv) during the late-stages of the infection. A large amount of genes coding for functions linked to host-immune invasion and multifunctional genes was active throughout the infection cycle. One gene associated with a conserved Plasmodium membrane protein with unknown function was upregulated throughout the parasite development in the vector, suggesting an important role in the successful completion of the sporogonic cycle. Gene expression analysis further identified genes, with unknown functions to be significantly differentially expressed during the infection in the vector as well as upregulation of reticulocyte-binding proteins, which raises the possibility of the multifunctionality of these RBPs. We establish the existence of highly stage-specific pathways being overexpressed during the infection. This first study of gene-expression of a non-human Plasmodium species in its vector provides a comprehensive insight into the molecular mechanisms of the common avian malaria parasite P. relictum and provides essential information on the evolutionary diversity in gene regulation of the Plasmodium's vector stages.


Assuntos
Culex , Malária Aviária , Parasitos , Plasmodium , Animais , Culex/genética , Culex/parasitologia , Malária Aviária/genética , Mosquitos Vetores/parasitologia , Plasmodium/genética
5.
Ecol Evol ; 10(11): 5079-5088, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551083

RESUMO

Glyphosate is the world's most widely used herbicide. The commercial success of this molecule is due to its nonselectivity and its action, which would supposedly target specific biosynthetic pathways found mainly in plants. Multiple studies have however provided evidence for high sensitivity of many nontarget species to glyphosate and/or to formulations (glyphosate mixed with surfactants). This herbicide, found at significant levels in aquatic systems through surface runoffs, impacts life history traits and immune parameters of several aquatic invertebrates' species, including disease-vector mosquitoes. Mosquitoes, from hatching to emergence, are exposed to aquatic chemical contaminants. In this study, we first compared the toxicity of pure glyphosate to the toxicity of glyphosate-based formulations for the main vector of avian malaria in Europe, Culex pipiens mosquito. Then we evaluated, for the first time, how field-realistic dose of glyphosate interacts with larval nutritional stress to alter mosquito life history traits and susceptibility to avian malaria parasite infection. Our results show that exposure of larvae to field-realistic doses of glyphosate, pure or in formulation, did not affect larval survival rate, adult size, and female fecundity. One of our two experimental blocks showed, however, that exposure to glyphosate decreased development time and reduced mosquito infection probability by malaria parasite. Interestingly, the effect on malaria infection was lost when the larvae were also subjected to a nutritional stress, probably due to a lower ingestion of glyphosate.

6.
Sci Rep ; 10(1): 10183, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576924

RESUMO

Malaria, a vector-borne disease caused by Plasmodium spp., remains a major global cause of mortality. Optimization of disease control strategies requires a thorough understanding of the processes underlying parasite transmission. While the number of transmissible stages (gametocytes) of Plasmodium in blood is frequently used as an indicator of host-to-mosquito transmission potential, this relationship is not always clear. Significant effort has been made in developing molecular tools that improve gametocyte density estimation and therefore prediction of mosquito infection rates. However a significant level of uncertainty around estimates remains. The weakness in the relationship between gametocyte burden, measured from a blood sample, and the mosquito infection rate could be explained by a non-homogeneous distribution of gametocytes in the bloodstream. The estimated gametocyte density would then only be a single snapshot that does not reflect the host infectivity. This aspect of Plasmodium infection, however, remains largely neglected. In both humans and birds, we found here that the gametocyte densities differed depending on which side of the body the sample was taken, suggesting that gametocytes are not homogeneously distributed within the vertebrate host. We observed a fluctuating asymmetry, in other words, the extremity of the body with the highest density of parasites is not always the same from one individual to another. An estimation of gametocyte density from only one blood sample, as is commonly measured, could, therefore, over- or underestimated the infectivity of gametocyte carriers. This might have important consequences on the epidemiology of the disease since we show that this variation influences host-to-mosquito transmission. Vectors fed on the least infected body part had a lower parasite burden than those fed on the most infected part. The heterogeneous distribution of gametocytes in bloodstream should be considered to improve diagnosis and test new malaria control strategies.


Assuntos
Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Vertebrados/parasitologia , Animais , Canários/parasitologia , Portador Sadio/parasitologia , Criança , Pré-Escolar , Culex/parasitologia , Feminino , Humanos , Masculino , Mosquitos Vetores/parasitologia , Plasmodium/patogenicidade
7.
Parasit Vectors ; 13(1): 23, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931866

RESUMO

BACKGROUND: Parasites are able to alter numerous aspects of their hosts' life history, behaviour and distribution. One central question in parasitology is to determine the degree of impact that parasites have on their hosts. Laboulbeniales (Fungi: Ascomycota) are ectoparasitic fungi of arthropods. Even though these fungi are widely distributed, little is known about their ecology and their possible physiological effects on their hosts. We used a highly specific bat fly-fungi association to assess the effect of these fungal parasites on their dipteran hosts. METHODS: We collected bat flies (Diptera: Nycteribiidae) belonging to two species, Nycteribia schmidlii and Penicillidia conspicua from their bat host Miniopterus schreibersii (Chiroptera: Miniopteridae). We experimentally tested the effect of infection on the lifespan of bat flies. RESULTS: The prevalence of Laboulbeniales fungi was 17.9% in N. schmidlii and 64.8% in P. conspicua. Two fungi species were identified, Arthrorhynchus eucampsipodae and A. nycteribiae, both showing strict host specificity with N. schmidlii and P. conspicua, respectively. We found that fungal infection reduced by half the survival rate of P. conspicua regardless of sex, whereas N. schmidlii was not affected by the infection. Moreover, the intensity of infection showed negative correlation with the lifespan of P. conspicua. CONCLUSIONS: To our knowledge, this is the first indication that fungal infection can alter bat fly survival and thus may play a significant role in the population dynamics of these bat ectoparasites.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/parasitologia , Dípteros/microbiologia , Ectoparasitoses/parasitologia , Animais , Ascomicetos/isolamento & purificação , Especificidade de Hospedeiro , Micoses/microbiologia , Dinâmica Populacional , Prevalência
9.
PLoS One ; 14(6): e0218452, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31185065

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0216360.].

10.
PLoS One ; 14(5): e0216360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048933

RESUMO

Sex-biased infections are a recurrent observation in vertebrates. In many species, males are more parasitized than females. Two potentially complementary mechanisms are often suggested to explain this pattern: sexual differences in susceptibility mainly caused by the effect of sex hormones on immunity and differential exposure to parasites. Exposure is mostly a consequence of host behavioural traits, but vector-borne parasitic infections involve another degree of complexity due to the active role of vectors in transmission. Blood-sucking insects may make choices based on cues produced by hosts. Regarding malaria, several studies highlighted a male-biased infection by Plasmodium sp in great tits (Parus major). We hypothesize that the mosquito vector, Culex pipiens, might at least partially cause this bias by being more attracted to male birds. Intrinsic variation associated to bird sex would explain a preference of mosquitoes for males. To test this hypothesis, we provide uninfected mosquitoes with a choice between uninfected male and female nestlings. Mosquito choice is assessed by sex typing of the ingested blood. We did not observe any preference for a given sex. This result does not support our prediction of a preference of mosquitoes for male great tits during the nestling period. In conclusion, mosquitoes do not seem to have an intrinsic preference for male nestlings. However, sexually divergent traits (e.g. behaviour, odour, metabolic rate) present in adults may play a role in the attraction of mosquitoes and should be investigated.


Assuntos
Doenças das Aves , Culex/parasitologia , Malária , Mosquitos Vetores/parasitologia , Passeriformes , Plasmodium/metabolismo , Caracteres Sexuais , Animais , Doenças das Aves/sangue , Doenças das Aves/parasitologia , Feminino , Malária/sangue , Malária/transmissão , Masculino , Comportamento de Nidação , Passeriformes/sangue , Passeriformes/parasitologia
11.
Evol Lett ; 2(4): 378-389, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30283689

RESUMO

Temporal variations in the activity of arthropod vectors can dramatically affect the epidemiology and evolution of vector-borne pathogens. Here, we explore the "Hawking hypothesis", which states that these pathogens may evolve the ability to time investment in transmission to match the activity of their vectors. First, we use a theoretical model to identify the conditions promoting the evolution of time-varying transmission strategies in pathogens. Second, we experimentally test the "Hawking hypothesis" by monitoring the within-host dynamics of Plasmodium relictum throughout the acute and the chronic phases of the bird infection. We detect a periodic increase of parasitemia and mosquito infection in the late afternoon that coincides with an increase in the biting activity of its natural vector. We also detect a positive effect of mosquito bites on Plasmodium replication in the birds both in the acute and in the chronic phases of the infection. This study highlights that Plasmodium parasites use two different strategies to increase the match between transmission potential and vector availability. We discuss the adaptive nature of these unconditional and plastic transmission strategies with respect to the time scale and the predictability of the fluctuations in the activity of the vector.

12.
PLoS One ; 13(2): e0192315, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29401525

RESUMO

The transmission of Plasmodium within a vertebrate host population is strongly associated with the life history traits of its vector. Therefore the effect of malaria infection on mosquito fecundity and longevity has traditionally received a lot of attention. Several species of malaria parasites reduce mosquito fecundity, nevertheless almost all of the studies have focused only on the first gonotrophic cycle. Yet, during their lifetime, female mosquitoes go through several gonotrophic cycles, which raises the question of whether they are able to compensate the fecundity costs induced by the parasite. The impact of Plasmodium infection on female longevity is not so clear and has produced conflicting results. Here we measured the impact of Plasmodium relictum on its vector's longevity and fecundity during three consecutive gonotrophic cycles. In accordance with previous studies, we observed a negative impact of Plasmodium infection on mosquito (Culex pipiens) fecundity in the first gonotrophic cycle. Interestingly, despite having taken two subsequent uninfected blood meals, the negative impact of malaria parasite persisted. Nevertheless no impact of infection on mosquito longevity was observed. Our results are not in line with the hypothesis that the reduction of fecundity observed in infected mosquitoes is an adaptive strategy of Plasmodium to increase the longevity of its vector. We discuss the different underlying mechanisms that may explain our results.


Assuntos
Culex/parasitologia , Interações Hospedeiro-Patógeno , Plasmodium/patogenicidade , Animais , Feminino
13.
Malar J ; 14: 383, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424326

RESUMO

BACKGROUND: The immune system of many insects wanes dramatically with age, leading to the general prediction that older insects should be more susceptible to infection than their younger counterparts. This prediction is however challenged by numerous studies showing that older insects are more resistant to a range of pathogens. The effect of age on susceptibility to infections is particularly relevant for mosquitoes given their role as vectors of malaria and other diseases. Despite this, the effect of mosquito age on Plasmodium susceptibility has been rarely explored, either experimentally or theoretically. METHODS: Experiments were carried out using the avian malaria parasite Plasmodium relictum and its natural vector in the field, the mosquito Culex pipiens. Both innate immune responses (number and type of circulating haemocytes) and Plasmodium susceptibility (prevalence and burden) were quantified in seven- and 17-day old females. Whether immunity or Plasmodium susceptibility are modulated by the previous blood feeding history of the mosquito was also investigated. To ensure repeatability, two different experimental blocks were carried out several weeks apart. RESULTS: Haemocyte numbers decrease drastically as the mosquitoes age. Despite this, older mosquitoes are significantly more resistant to a Plasmodium infection than their younger counterparts. Crucially, however, the age effect is entirely reversed when old mosquitoes have taken one previous non-infected blood meal. CONCLUSIONS: The results agree with previous studies showing that older insects are often more resistant to infections than younger ones. These results suggest that structural and functional alterations in mosquito physiology with age may be more important than immunity in determining the probability of a Plasmodium infection in old mosquitoes. Possible explanations for why the effect is reversed in blood-fed mosquitoes are discussed. The reversal of the age effect in blood fed mosquitoes implies that age is unlikely to have a significant impact on mosquito susceptibility in the field.


Assuntos
Envelhecimento/imunologia , Culex/fisiologia , Culex/parasitologia , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Malária Aviária/parasitologia , Malária Aviária/transmissão , Animais , Canários/parasitologia , Culex/imunologia , Comportamento Alimentar , Hemolinfa/imunologia , Hemolinfa/parasitologia , Insetos Vetores/imunologia , Prevalência
14.
Philos Trans R Soc Lond B Biol Sci ; 370(1675)2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26150666

RESUMO

Avian malaria has historically played an important role as a model in the study of human malaria, being a stimulus for the development of medical parasitology. Avian malaria has recently come back to the research scene as a unique animal model to understand the ecology and evolution of the disease, both in the field and in the laboratory. Avian malaria is highly prevalent in birds and mosquitoes around the world and is amenable to laboratory experimentation at each stage of the parasite's life cycle. Here, we take stock of 5 years of experimental laboratory research carried out using Plasmodium relictum SGS1, the most prevalent avian malaria lineage in Europe, and its natural vector, the mosquito Culex pipiens. For this purpose, we compile and analyse data obtained in our laboratory in 14 different experiments. We provide statistical relationships between different infection-related parameters, including parasitaemia, gametocytaemia, host morbidity (anaemia) and transmission rates to mosquitoes. This analysis provides a wide-ranging picture of the within-host and between-host parameters that may bear on malaria transmission and epidemiology.


Assuntos
Malária Aviária/parasitologia , Plasmodium/genética , Plasmodium/patogenicidade , Animais , Aves , Culex/parasitologia , Modelos Animais de Doenças , Evolução Molecular , Interações Hospedeiro-Parasita , Humanos , Insetos Vetores/parasitologia , Malária Aviária/transmissão , Parasitemia/parasitologia , Virulência
15.
Front Microbiol ; 6: 1388, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733946

RESUMO

Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native) could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i) the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii) the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts.

16.
Behav Processes ; 108: 36-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25241307

RESUMO

The question of why females evaluate more than one sexual trait to choose their mates has received increasing attention in recent years. Here, we investigated the information-content of both morphological and behavioural sexual traits that have been identified as predictors of male reproductive success in the palmate newt, Lissotriton helveticus. We examined the co-variation of multiple traits with one aspect of male quality, the male body condition, using both a correlative study and an experimental diet restriction. We found that the development of the three morphological sexual traits (filament length, hind-foot-web size, and crest size) was positively inter-correlated, and was correlated to body condition. In contrast, courtship activity, an important indicator for male reproductive success, was uncorrelated to male body condition. Our results suggest that females likely obtain redundant information on male condition when evaluating filament length, hind-foot-web size and crest size during mate choice. Contrary to our expectations, display activity was not a reliable indicator of male condition, leaving the information-content of this trait unraveled. Our results further suggest that complex, multiple traits may evolve because redundant message, unreliable signals and, possibly, multiple messages can coexist.


Assuntos
Comportamento Animal/fisiologia , Preferência de Acasalamento Animal/fisiologia , Salamandridae/anatomia & histologia , Salamandridae/fisiologia , Caracteres Sexuais , Animais , Corte , Feminino , Masculino
17.
J Insect Physiol ; 70: 125-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25108053

RESUMO

The Wolbachia are symbiotic bacteria vertically transmitted from one host generation to another. However, a growing amount of data shows that horizontal transfers of Wolbachia also frequently occur within and between host species. The consequences of the arrival of new symbionts on host physiology can be studied by their experimental introduction in asymbiotic hosts. After experimental transfers of the eight major isopod Wolbachia strains in the isopod Porcellio dilatatus only two of them (wCon and wDil) were found to (1) have no pathogenic effect on the host and (2) be able to pass vertically to the host offspring. In the present work, we studied the influence of these two strains, able to complete an horizontal transfer, on immunity and reproduction of P. dilatatus at two stages of the transfer: (1) in recipient hosts that encounter the symbionts: to test the influence of symbiont when acquired during host life and (2) in vertically infected offspring: to test the influence of a symbiotic interaction occurring all lifelong. The impact of Wolbachia varied depending on the stage: there were clearer effects in vertically infected individuals than in those that acquired the symbionts during their lives. Moreover, the two Wolbachia strains showed contrasted effects: the strain wCon tended to reduce the reproductive investment but to maintain or increase immune parameters whilst wDil had positive effects on reproductive investment but decreased the investment in some immune parameters. These results suggest that horizontally acquisition of Wolbachia can influence the balance between host immune and reproductive traits.


Assuntos
Isópodes/microbiologia , Wolbachia/imunologia , Animais , Feminino , Isópodes/imunologia , Isópodes/fisiologia , Masculino , Fagocitose/fisiologia , Reprodução/fisiologia , Simbiose/imunologia , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...