Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Vaccines (Basel) ; 11(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36992176

RESUMO

Cancer immunotherapy embraces many current, promising therapeutic approaches to eradicate tumors by activating host antitumor activity [...].

3.
Mol Imaging Biol ; 25(3): 504-512, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36261778

RESUMO

PURPOSE: RNA:DNA hybrids are co-transcriptional products with acknowledged cytoplasmic pro-inflammatory role as activators of the cGAS-STING pathway. We recently proved them also as radiation-induced senescence messages for the abscopal effect mediation, demonstrating the need for a functional p53 for their production and release in A549 and H1299 tumour cells. However, little is known about their role under different stress conditions, especially in cancer cells. METHODS: In this work, we open the investigation making use of automated quantitative imaging to characterize the hybrid subcellular distribution in HeLa cells grown under different oxygen pressures or exposed to different ionizing radiation doses. After cell imaging by confocal fluorescent microscopy, we apply automated imaging methods developed on purpose to quantify hybrid foci and nuclear cluster intensity, regional and local density and dimension. RESULTS: We show that alteration of culture oxygenation increases hybrid cytoplasmic presence, especially when caused by an hyperoxic environment, with evident hybrid gathering at the cell membrane. Ionizing radiations always fail to increase hybrids, in accordance with the absence of functional p53 in HeLa cells. However, dose-dependent effects are still evident and suggest a threshold dose of 7.5 Gy for remarkable hybrid reduction. CONCLUSION: Together with our previous results, these data demonstrate for the first time that different types of stress can increase hybrid production in cancer cells and by at least two different pathways, one p53-dependent triggerable by ionizing radiations and one p53-independent triggerable by oxidative stress. Together, our findings provide a starting point for understanding hybrid role in tumour stress response.


Assuntos
Oxigenoterapia Hiperbárica , RNA , Humanos , Células HeLa , Proteína Supressora de Tumor p53/metabolismo , DNA , Oxigênio/metabolismo
4.
Comput Struct Biotechnol J ; 20: 4122-4130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016714

RESUMO

Comet assay provides an easy solution to estimate DNA damage in single cells through microscopy assessment. It is widely used in the analysis of genotoxic damages induced by radiotherapy or chemotherapeutic agents. DNA damage is quantified at the single-cell level by computing the displacement between the genetic material within the nucleus, typically called "comet head", and the genetic material in the surrounding part of the cell, considered as the "comet tail". Today, the number of works based on Comet Assay analyses is really impressive. In this work, besides revising the solutions available to obtain reproducible and reliable quantitative data, we developed an easy-to-use tool named CometAnalyser. It is designed for the analysis of both fluorescent and silver-stained wide-field microscopy images and allows to automatically segment and classify the comets, besides extracting Tail Moment and several other intensity/morphological features for performing statistical analysis. CometAnalyser is an open-source deep-learning tool. It works with Windows, Macintosh, and UNIX-based systems. Source code, standalone versions, user manual, sample images, video tutorial and further documentation are freely available at: https://sourceforge.net/p/cometanalyser.

5.
Vaccines (Basel) ; 10(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35891165

RESUMO

Advanced therapy medical products (ATMPs) are rapidly growing as innovative medicines for the treatment of several diseases. Hence, the role of quality analytical tests to ensure consistent product safety and quality has become highly relevant. Several clinical trials involving dendritic cell (DC)-based vaccines for cancer treatment are ongoing at our institute. The DC-based vaccine is prepared via CD14+ monocyte differentiation. A fresh dose of 10 million DCs is administered to the patient, while the remaining DCs are aliquoted, frozen, and stored in nitrogen vapor for subsequent treatment doses. To evaluate the maintenance of quality parameters and to establish a shelf life of frozen vaccine aliquots, a stability program was developed. Several parameters of the DC final product at 0, 6, 12, 18, and 24 months were evaluated. Our results reveal that after 24 months of storage in nitrogen vapor, the cell viability is in a range between 82% and 99%, the expression of maturation markers remains inside the criteria for batch release, the sterility tests are compliant, and the cell costimulatory capacity unchanged. Thus, the data collected demonstrate that freezing and thawing do not perturb the DC vaccine product maintaining over time its functional and quality characteristics.

6.
Cell Death Dis ; 13(1): 80, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075119

RESUMO

Glioblastoma (GBM) is the most lethal brain tumor in adults. Radiation, together with temozolomide is the standard treatment, but nevertheless, relapse occurs in nearly all cases. Understanding the mechanisms underlying radiation resistance may help to find more effective therapies. After radiation treatment, ATP is released into the tumor microenvironment where it binds and activates purinergic P2 receptors, mainly of the P2X7 subtype. Two main P2X7 splice variants, P2X7A and P2X7B, are expressed in most cell types, where they associate with distinct biochemical and functional responses. GBM cells widely differ for the level of P2X7 isoform expression and accordingly for sensitivity to stimulation with extracellular ATP (eATP). Irradiation causes a dramatic shift in P2X7 isoform expression, with the P2X7A isoform being down- and the P2X7B isoform up-modulated, as well as extensive cell death and overexpression of stemness and senescence markers. Treatment with P2X7 blockers during the post-irradiation recovery potentiated irradiation-dependent cytotoxicity, suggesting that P2X7B activation by eATP generated a trophic/growth-promoting stimulus. Altogether, these data show that P2X7A and B receptor isoform levels are inversely modulated during the post-irradiation recovery phase in GBM cells.


Assuntos
Trifosfato de Adenosina , Glioblastoma , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Recidiva Local de Neoplasia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Purinérgicos P2X7/genética , Microambiente Tumoral
7.
Pharmaceuticals (Basel) ; 14(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066170

RESUMO

E-cadherin is a key player in gastric cancer (GC) and germline alterations of CDH1, its encoding gene, are responsible for Hereditary Diffuse Gastric Cancer (HDGC) syndrome. This study aimed at elucidating the role of genetic variants and DNA methylation of CDH1 promoter and enhancers in the regulation of gene expression. For this purpose, we analyzed genetic variants of the CDH1 gene through Next-Generation Sequencing (NGS) in a series of GC cell lines (NCI-N87, KATO-III, SNU-1, SNU-5, GK2, AKG, KKP) and the corresponding CDH1 expression levels. By bisulfite genomic sequencing, we analyzed the methylation status of CDH1 regulatory regions in 8 GC cell lines, in a series of 13 sporadic GC tissues and in a group of 20 HDGC CDH1-negative patients and 6 healthy controls. The NGS analysis on CDH1 coding and regulatory regions detected genetic alterations in 3 out of 5 GC cell lines lacking functional E-cadherin. CDH1 regulatory regions showed different methylation patterns in patients and controls, GC cell lines and GC tissues, expressing different E-cadherin levels. Our results showed that alterations in terms of genetic variants and DNA methylation patterns of both promoter and enhancers are associated with CDH1 expression levels and have a role in its regulation.

8.
J Exp Clin Cancer Res ; 40(1): 89, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33673859

RESUMO

BACKGROUND: Recent developments in abscopal effect strongly support the use of radiotherapy for the treatment of metastatic disease. However, deeper understanding of the molecular mechanisms underlying the abscopal effect are required to best benefit a larger proportion of patients with metastasis. Several groups including ours, reported the involvement of wild-type (wt) p53 in radiation-induced abscopal effects, however very little is known on the role of wtp53 dependent molecular mechanisms. METHODS: We investigated through in vivo and in vitro approaches how wtp53 orchestrates radiation-induced abscopal effects. Wtp53 bearing (A549) and p53-null (H1299) NSCLC lines were xenotransplanted in nude mice, and cultured in 2D monolayers and 3D tumor spheroids. Extracellular vesicles (EVs) were isolated from medium cell culture by ultracentrifugation protocol followed by Nanoparticle Tracking Analysis. Gene expression was evaluated by RT-Real Time, digital qRT-PCR, and dot blot technique. Protein levels were determined by immunohistochemistry, confocal anlysis, western blot techniques, and immunoassay. RESULTS: We demonstrated that single high-dose irradiation (20 Gy) induces significant tumor growth inhibition in contralateral non-irradiated (NIR) A549 xenograft tumors but not in NIR p53-null H1299 or p53-silenced A549 (A549sh/p53) xenografts. We further demonstrates that irradiation of A549 cells in vitro induces a senescence-associated secretory phenotype (SASP) producing extracellular vesicles (EVs) expressing CD63 and carrying DNA:RNA hybrids and LINE-1 retrotransposon. IR-A549 EVs also hamper the colony-forming capability of recipient NIR A549 cells, induce senescent phenotype, nuclear expression of DNA:RNA hybrids, and M1 macrophage polarization. CONCLUSIONS: In our models, we demonstrate that high radiation dose in wtp53 tumors induce the onset of SASP and secretion of CD63+ EVs loaded with DNA:RNA hybrids and LINE-1 retrotransposons that convey senescence messages out of the irradiation field triggering abscopal effect in NIR tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Células RAW 264.7
9.
Cancer Lett ; 506: 152-166, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33652086

RESUMO

Human glioblastoma (GBM) is one of the most feared primary malignant brain tumors. We investigated the effect of hyperbaric oxygen (HBO) on GBM patient-derived cells and on microglia cell biology (CHME-5). HBO administered to GBM cells inhibited cell proliferation, downregulated hypoxia-inducible factor 1 α (HIF-1α) expression, and induced glucose metabolism reprogramming (glucose rewiring). It also affected the ability of a cell to perpetuate its lineage, give rise to differentiated cells and interact with its environment to maintain a balance between quiescence, proliferation and regeneration (stemness features). Such an effect may be ascribable to an increase in intracellular ROS levels and to the triggering of inflammasome signaling by HBO itself through caspase1 activation. Moreover, the results obtained from the combination of HBO and radiotherapy (RT) clearly showed a radiosensitising effect of HBO on GBM cells grown in both 2D and 3D, and a radioprotective effect of HBO in CHME-5. In addition, the exposure of M0 microglia cells to exhausted medium or extracellular vesicles (EVs) of HBO-treated GBM cells upregulated the expression of pro-inflammatory cytokines IL1ß, IL6 and STAT1, whilst also downregulating the anti-inflammatory cytokine PPARγ. Collectively, these data provide a scientific rationale for the use of HBO in combination with RT for the treatment of patients with GBM.


Assuntos
Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-1beta/genética , PPAR gama/genética , Fator de Transcrição STAT1/genética , Caspase 1/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Glucose/genética , Glucose/metabolismo , Humanos , Oxigenoterapia Hiperbárica/efeitos adversos , Inflamassomos/efeitos dos fármacos , Interleucina-6/genética , Microglia/efeitos dos fármacos , Microglia/patologia , Oxigênio/farmacologia , Pressão , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260926

RESUMO

Pancreatic cancer (PC) remains one of the most lethal cancers worldwide. Sigma receptors (SRs) have been proposed as cancer therapeutic targets. Their main localization suggests they play a potential role in ER stress and in the triggering of the unfolded protein response (UPR). Here, we investigated the mechanisms of action of RC-106, a novel pan-SR modulator, to characterize therapeutically exploitable role of SRs in tumors. Two PC cell lines were used in all the experiments. Terminal UPR activation was evaluated by quantifying BiP, ATF4 and CHOP by Real-Time qRT-PCR, Western Blot, immunofluorescence and confocal microscopy. Cell death was studied by flow cytometry. Post-transcriptional gene silencing was performed to study the interactions between SRs and UPR key proteins. RC-106 activated ER stress sensors in a dose- and time-dependent manner. It also induced ROS production accordingly with ATF4 upregulation at the same time reducing cell viability of both cell lines tested. Moreover, RC-106 exerted its effect through the induction of the terminal UPR, as shown by the activation of some of the main transducers of this pathway. Post-transcriptional silencing studies confirmed the connection between SRs and these key proteins. Overall, our data highlighted a key role of SRs in the activation of the terminal UPR pathway, thus indicating pan-SR ligands as candidates for targeting the UPR in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas/patologia , Receptores sigma/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Albuminas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Paclitaxel/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
11.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182844

RESUMO

Hypofractionation is currently considered a valid alternative to conventional radiotherapy for the treatment of patients with organ-confined prostate cancer. Recent data have demonstrated that extreme hypofractionation, which involves the use of a high radiation dose per delivered fraction and concomitant reduction of sessions, is a safe and effective treatment, even though its radiobiological rationale is still lacking. The present work aims to investigate the biological basis sustaining this approach and to evaluate the potential of a hypofractionated regimen in combination with androgen deprivation therapy, one of the major standards of care for prostate cancer. Findings show that androgen receptor (AR) modulation, by use of androgens and antiandrogens, has a significant impact on cell survival, especially in hypoxic conditions (4% O2). Subsequent experiments have revealed that AR activity as a transcription factor is involved in the onset of malignant senescence-associated secretory phenotype (SASP) and activation of DNA repair cascade. In particular, we found that AR stimulation in hypoxic conditions promotes the enhanced transcription of ATM gene, the cornerstone kinase of the DNA damage repair genes. Together, these data provide new potential insights to justify the use of androgen deprivation therapy, in particular with second-generation anti-androgens such as enzalutamide, in combination with radiotherapy.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Quimiorradioterapia/métodos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Androgênios/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/genética , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Reparo do DNA/genética , Humanos , Masculino , Metribolona/farmacologia , Modelos Biológicos , Neoplasias da Próstata/metabolismo , Hipofracionamento da Dose de Radiação , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transcriptoma
12.
DNA Repair (Amst) ; 95: 102949, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890865

RESUMO

BACKGROUND: Since its discovery in the late 19th century, radiotherapy has been one of the most important medical treatments in oncology. Recently, fasting or short-term starvation (STS) in cancer patients undergoing chemotherapy has been studied to determine its potential for enhancing the therapeutic index and for preventing side- effects, but no data are available in the radiotherapy setting. We thus decided to investigate the effects in vitro of STS in combination with radiotherapy in metastatic cancer cells and non-cancer cells. METHODS: Cells were incubated in short-term starvation medium (STS medium, 0·5 g/L glucose + 1% FBS) or in control medium (CM medium, 1 g/L glucose + 10 % FBS) for 24 h and then treated with single high-dose radiation. A plexiglass custom-built phantom was used to irradiate cells. DNA damage was evaluated using alkaline comet assay and theCometAnalyser software. The cell surviving fraction was assessed by clonogenic assay. FINDING: STS followed by single high-dose radiation significantly increased DNA damage in metastatic cancer cell lines but not in normal cells. Furthermore, STS reduced the surviving fraction of irradiated tumor cells, indicating a good radio-sensitizing effect on metastatic cell lines. This effect was not observed in non-tumor cells. INTERPRETATION: Our results suggest that STS may alter cellular processes, enhancing the efficacy of radiotherapy in metastatic cancer cellsin vitro. Interestingly, STS has radioprotective effect on the survival of healthy cells.


Assuntos
Jejum , Radioterapia , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Metástase Neoplásica/radioterapia , Fatores de Tempo , Microambiente Tumoral/efeitos da radiação
13.
J Hematol Oncol ; 13(1): 97, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677979

RESUMO

Cancer is a complex disease in which both genetic defects and microenvironmental components contribute to the development, progression, and metastasization of disease, representing major hurdles in the identification of more effective and safer treatment regimens for patients. Three-dimensional (3D) models are changing the paradigm of preclinical cancer research as they more closely resemble the complex tissue environment and architecture found in clinical tumors than in bidimensional (2D) cell cultures. Among 3D models, spheroids and organoids represent the most versatile and promising models in that they are capable of recapitulating the heterogeneity and pathophysiology of human cancers and of filling the gap between conventional 2D in vitro testing and animal models. Such 3D systems represent a powerful tool for studying cancer biology, enabling us to model the dynamic evolution of neoplastic disease from the early stages to metastatic dissemination and the interactions with the microenvironment. Spheroids and organoids have recently been used in the field of drug discovery and personalized medicine. The combined use of 3D models could potentially improve the robustness and reliability of preclinical research data, reducing the need for animal testing and favoring their transition to clinical practice. In this review, we summarize the recent advances in the use of these 3D systems for cancer modeling, focusing on their innovative translational applications, looking at future challenges, and comparing them with most widely used animal models.


Assuntos
Técnicas de Cultura de Células , Neoplasias/patologia , Organoides , Esferoides Celulares , Animais , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Modelos Animais , Especificidade de Órgãos , Organoides/citologia , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos , Especificidade da Espécie , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas , Microambiente Tumoral
14.
Front Oncol ; 9: 1308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850207

RESUMO

Despite the gradual decrease in incidence, gastric cancer is still the third leading cause of cancer death worldwide. Although chemotherapy enhances overall survival and quality of life in advanced disease, the median overall survival is < 12 months. In recent years, the human epidermal growth factor receptor (ErbB) family has been extensively investigated in gastric cancer. The ErbB family is composed of four closely-related members: ErbB-1 (HER1 or epidermal growth factor receptor, EGFR), ErbB-2 (HER2), ErbB-3 (HER3), and ErbB-4 (HER4), all of which play a critical role in regulating cell growth, proliferation and migration of tumors. It is well known that gastric cancer overexpresses HER in a heterogeneous pattern, especially EGFR, and HER2. HER3 is another important member of the ErbB family that preferentially activates the phosphatidylinositol 3-kinase (PI3K) pathway. Furthermore, its heterodimerization with HER2 seems fundamental for steering HER2-overexpressing breast cancer tumor growth. Less is known about the impact of HER4 on gastric cancer. Improved survival from the use of trastuzumab has paved the way for ErbB receptor family-targeted treatments in gastric cancer. However, unlike trastuzumab, ErbB receptor-targeted drugs have not consistently maintained the encouraging results obtained in preclinical and early clinical trials. This may be attributable to the intrinsic heterogeneity of gastric cancer and/or to the lack of standardized test quality for established biomarkers used to evaluate these biological targets. This review presents an overview of the most recent clinical studies on agents targeting the ErbB family in gastric cancer.

15.
Front Pharmacol ; 10: 490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156430

RESUMO

Introduction: Pancreatic cancer (PC) is one of the most lethal tumor worldwide, with no prognosis improvement over the past 20-years. The silent progressive nature of this neoplasia hampers the early diagnosis, and the surgical resection of the tumor, thus chemotherapy remains the only available therapeutic option. Sigma receptors (SRs) are a class of receptors proposed as new cancer therapeutic targets due to their over-expression in tumor cells and their involvement in cancer biology. The main localization of these receptors strongly suggests their potential role in ER unfolded protein response (ER-UPR), a condition frequently occurring in several pathological settings, including cancer. Our group has recently identified RC-106, a novel pan-SR modulator with good in vitro antiproliferative activities toward a panel of different cancer cell lines. In the present study, we investigated the in vitro properties and pharmacological profile of RC-106 in PC cell lines with the aim to identify a potential lead candidate for the treatment of this tumor. Methods: Pancreatic cancer cell lines Panc-1, Capan-1, and Capan-2 have been used in all experiments. S1R and TMEM97/S2R expression in PC cell lines was quantified by Real-Time qRT-PCR and Western Blot experiments. MTS assay was used to assess the antiproliferative effect of RC-106. The apoptotic properties of RC-106 was evaluated by TUNEL and caspase activation assays. GRP78/BiP, ATF4, and CHOP was quantified to evaluate ER-UPR. Proteasome activity was investigated by a specific fluorescent-based assay. Scratch wound healing assay was used to asses RC-106 effect on cell migration. In addition, we delineated the in vivo pharmacokinetic profile and pancreas distribution of RC-106 in male CD-1 mice. Results: Panc-1, Capan-1, and Capan-2 express both SRs. RC-106 exerts an antiproliferative and pro-apoptotic effect in all examined cell lines. Cells exposure to RC-106 induces the increase of the expression of ER-UPR related proteins, and the inhibition of proteasome activity. Moreover, RC-106 is able to decrease PC cell lines motility. The in vivo results show that RC-106 is more concentrated in pancreas than plasma. Conclusion: Overall, our data evidenced that the pan-SR modulator RC-106 is an optimal candidate for in vivo studies in animal models of PC.

16.
Expert Opin Drug Discov ; 14(3): 289-301, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30689452

RESUMO

INTRODUCTION: Despite the increasing financial outlay on cancer research and drug discovery, many advanced cancers remain incurable. One possible strategy for increasing the approval rate of new anticancer drugs for use in clinical practice could be represented by three-dimensional (3D) tumor models on which to perform in vitro drug screening. There is a general consensus among the scientific community that 3D tumor models more closely recapitulate the complexity of tumor tissue architecture and biology than bi-dimensional cell cultures. In a 3D context, cells are connected to each other through tissue junctions and show proliferative and metabolic gradients that resemble the intricate milieu of organs and tumors. Areas covered: The present review focuses on available techniques for generating tumor spheroids and discusses current and future applications in the field of drug discovery. The article is based on literature obtained from PubMed. Expert opinion: Given the relative simplicity of spheroid models with respect to clinical tumors, we must be careful not to overestimate the reliability of their drug-response prediction capacity. The next challenge is to combine our knowledge of co-culture methodologies with high-content imaging and advanced microfluidic technologies to improve the readout and biomimetic potential of spheroid-based models.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Animais , Biomimética/métodos , Humanos , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Reprodutibilidade dos Testes , Esferoides Celulares/metabolismo
17.
Front Pharmacol ; 9: 711, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042674

RESUMO

Despite the interest aroused by sigma receptors (SRs) in the area of oncology, their role in tumor biology remains enigmatic. The predominant subcellular localization and main site of activity of SRs are the endoplasmic reticulum (ER). Current literature data, including recent findings on the sigma 2 receptor subtype (S2R) identity, suggest that SRs may play a role as ER stress gatekeepers. Although SR endogenous ligands are still unknown, a wide series of structurally unrelated compounds able to bind SRs have been identified. Currently, the identification of novel antiproliferative molecules acting via SR interaction is a challenging task for both academia and industry, as shown by the fact that novel anticancer drugs targeting SRs are in the preclinical-stage pipeline of pharmaceutical companies (i.e., Anavex Corp. and Accuronix). So far, no clinically available anticancer drugs targeting SRs are still available. The present review focuses literature advancements and provides a state-of-the-art overview of SRs, with emphasis on their involvement in cancer biology and on the role of SR modulators as anticancer agents. Findings from preclinical studies on novel anticancer drugs targeting SRs are presented in brief.

18.
Future Microbiol ; 13: 187-194, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28975808

RESUMO

AIM: HPV DNA has never been investigated in nipple discharges (ND) and serum-derived extracellular vesicles, although its presence has been reported in ductal lavage fluids and blood specimens. MATERIALS & METHODS: We analyzed 50 ND, 22 serum-derived extracellular vesicles as well as 51 pathologic breast tissues for the presence of 16 HPV DNA types. RESULTS: We show that the presence of HPV DNA in the ND is predictive of HPV DNA-positive breast lesions and that HPV DNA is more represented in intraductal papillomas. We also show the presence of HPV DNA in the serum-derived extracellular vesicles. CONCLUSION: Our data supports the use of liquid biopsy to detect HPV DNA in breast pathology.


Assuntos
Mama/patologia , DNA Viral/metabolismo , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Vesículas Extracelulares/química , Feminino , Humanos , Biópsia Líquida , Pessoa de Meia-Idade , Papiloma Intraductal/patologia , Papillomaviridae/genética , Adulto Jovem
19.
J Vis Exp ; (130)2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29286488

RESUMO

The past two decades have seen a shift from cytotoxic drugs to targeted therapy in medical oncology. Although targeted therapeutic agents have shown more impressive clinical efficacy and minimized adverse effects than traditional treatments, drug resistance has become the main limitation to their benefits. Several preclinical in vitro/in vivo models of acquired resistance to targeted agents in clinical practice have been developed mainly by using two strategies: i) genetic manipulation for modeling genotypes of acquired resistance, and ii) in vitro/in vivo selection of resistant models. In the present work, we propose a unifying framework, for investigating the underlying mechanisms responsible for acquired resistance to targeted therapeutic agents, starting from the generation of drug-resistant cellular subclones to the description of silencing procedures used for restoring the sensitivity to the inhibitor. This simple time- and cost-effective approach is widely applicable, and could be easily extended to investigate resistance mechanisms to other targeted therapeutic drugs in different tumor histotypes.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Silenciamento de Genes/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Humanos , Neoplasias/patologia , Transfecção
20.
Clin Cancer Res ; 23(22): 7047-7058, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912136

RESUMO

Purpose: Despite tumor resection being the first-line clinical care for glioblastoma (GBM) patients, nearly all preclinical immune therapy models intend to treat established GBM. Characterizing cytoreductive surgery-induced immune response combined with the administration of immune cytokines has the potential of offering a new treatment paradigm of immune therapy for GBMs.Experimental Design: We developed syngeneic orthotopic mouse GBM models of tumor resection and characterized the immune response of intact and resected tumors. We also created a highly secretable variant of immune cytokine IFNß to enhance its release from engineered mouse mesenchymal stem cells (MSC-IFNß) and assessed whether surgical resection of intracranial GBM tumor significantly enhanced the antitumor efficacy of targeted on-site delivery of encapsulated MSC-IFNß.Results: We show that tumor debulking results in substantial reduction of myeloid-derived suppressor cells (MDSC) and simultaneous recruitment of CD4/CD8 T cells. This immune response significantly enhanced the antitumor efficacy of locally delivered encapsulated MSC-IFNß via enhanced selective postsurgical infiltration of CD8 T cells and directly induced cell-cycle arrest in tumor cells, resulting in increased survival of mice. Utilizing encapsulated human MSC-IFNß in resected orthotopic tumor xenografts of patient-derived GBM, we further show that IFNß induces cell-cycle arrest followed by apoptosis, resulting in increased survival in immunocompromised mice despite their absence of an intact immune system.Conclusions: This study demonstrates the importance of syngeneic tumor resection models in developing cancer immunotherapies and emphasizes the translational potential of local delivery of immunotherapeutic agents in treating cancer. Clin Cancer Res; 23(22); 7047-58. ©2017 AACR.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/imunologia , Interferon beta/genética , Células-Tronco/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Quimiotaxia de Leucócito/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Interferon beta/metabolismo , Camundongos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/genética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...