Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1191944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599689

RESUMO

Background and aim: Results from randomized controlled trials indicate that no single diet performs better than other for all people living with obesity. Regardless of the diet plan, there is always large inter-individual variability in weight changes, with some individuals losing weight and some not losing or even gaining weight. This raises the possibility that, for different individuals, the optimal diet for successful weight loss may differ. The current study utilized machine learning to build a predictive model for successful weight loss in subjects with overweight or obesity on a New Nordic Diet (NND). Methods: Ninety-one subjects consumed an NND ad libitum for 26 weeks. Based on their weight loss, individuals were classified as responders (weight loss ≥5%, n = 46) or non-responders (weight loss <2%, n = 24). We used clinical baseline data combined with baseline urine and plasma untargeted metabolomics data from two different analytical platforms, resulting in a data set including 2,766 features, and employed symbolic regression (QLattice) to develop a predictive model for weight loss success. Results: There were no differences in clinical parameters at baseline between responders and non-responders, except age (47 ± 13 vs. 39 ± 11 years, respectively, p = 0.009). The final predictive model for weight loss contained adipic acid and argininic acid from urine (both metabolites were found at lower levels in responders) and generalized from the training (AUC 0.88) to the test set (AUC 0.81). Responders were also able to maintain a weight loss of 4.3% in a 12 month follow-up period. Conclusion: We identified a model containing two metabolites that were able to predict the likelihood of achieving a clinically significant weight loss on an ad libitum NND. This work demonstrates that models based on an untargeted multi-platform metabolomics approach can be used to optimize precision dietary treatment for obesity.

2.
Curr Obes Rep ; 12(3): 223-230, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37335395

RESUMO

PURPOSE OF REVIEW: There is a large variability between individuals in the weight loss response to any given diet treatment, which fuels interest into personalized or precision nutrition. Although most efforts are directed toward identifying biological or metabolic factors, several behavioral and psychological factors can also be responsible for some of this interindividual variability. RECENT FINDINGS: There are many factors that can influence the response to dietary weight loss interventions, including factors related to eating behavior (emotional eating, disinhibition, restraint, perceived stress), behaviors and societal norms related to age and sex, psychological and personal factors (motivation, self-efficacy, locus of control, self-concept), and major life events. The success of a weight loss intervention can be influenced by many psychological and behavioral constructs and not merely by physiological factors such as biology and genetics. These factors are difficult to capture accurately and are often overlooked. Future weight loss studies should consider assessing such factors to better understand the underlying reasons for the large interindividual variability to weight loss therapy.


Assuntos
Dieta Redutora , Obesidade , Humanos , Obesidade/psicologia , Redução de Peso/fisiologia , Comportamento Alimentar/psicologia , Motivação
3.
Front Nutr ; 10: 1108088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181156

RESUMO

Background: The gut microbiota has emerged as a potential therapeutic target to improve the management of obesity and its comorbidities. Objective: We investigated the impact of a high fiber (∼38 g/d) plant-based diet, consumed ad libitum, with or without added inulin-type fructans (ITF), on the gut microbiota composition and cardiometabolic outcomes in subjects with obesity. We also tested if baseline Prevotella/Bacteroides (P/B) ratio predicts weight loss outcomes. Methods: This is a secondary exploratory analysis from the PREVENTOMICS study, in which 100 subjects (82 completers) aged 18-65 years with body mass index 27-40 kg/m2 were randomized to 10 weeks of double-blinded treatment with a personalized or a generic plant-based diet. Changes from baseline to end-of-trial in gut microbiota composition (16S rRNA gene amplicon sequencing), body composition, cardiometabolic health and inflammatory markers were evaluated in the whole cohort (n = 82), and also compared in the subgroup of subjects who were supplemented with an additional 20 g/d ITF-prebiotics (n = 21) or their controls (n = 22). Results: In response to the plant-based diet, all subjects lost weight (-3.2 [95% CI -3.9, -2.5] kg) and experienced significant improvements in body composition and cardiometabolic health indices. Addition of ITF to the plant-based diet reduced microbial diversity (Shannon index) and selectively increased Bifidobacterium and Faecalibacterium (q < 0.05). The change in the latter was significantly associated with higher values of insulin and HOMA-IR and lower HDL cholesterol. In addition, the LDL:HDL ratio and the concentrations of IL-10, MCP-1 and TNFα were significantly elevated in the ITF-subgroup. There was no relationship between baseline P/B ratio and changes in body weight (r = -0.07, p = 0.53). Conclusion: A plant-based diet consumed ad libitum modestly decreases body weight and has multiple health benefits in individuals with obesity. Addition of ITF-prebiotics on top this naturally fiber-rich background selectively changes gut microbiota composition and attenuates some of the realized cardiometabolic benefits. Clinical trial registration: [https://clinicaltrials.gov/ct2/show/NCT04590989], identifier [NCT04590989].

4.
Crit Rev Food Sci Nutr ; : 1-29, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37077157

RESUMO

Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.

5.
Clin Nutr ; 41(8): 1834-1844, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839545

RESUMO

BACKGROUND & AIMS: Growing evidence suggests that biomarker-guided dietary interventions can optimize response to treatment. In this study, we evaluated the efficacy of the PREVENTOMCIS platform-which uses metabolomic and genetic information to classify individuals into different 'metabolic clusters' and create personalized dietary plans-for improving health outcomes in subjects with overweight or obesity. METHODS: A 10-week parallel, double-blinded, randomized intervention was conducted in 100 adults (82 completers) aged 18-65 years, with body mass index ≥27 but <40 kg/m2, who were allocated into either a personalized diet group (n = 49) or a control diet group (n = 51). About 60% of all food was provided free-of-charge. No specific instruction to restrict energy intake was given. The primary outcome was change in fat mass from baseline, evaluated by dual energy X-ray absorptiometry. Other endpoints included body weight, waist circumference, lipid profile, glucose homeostasis markers, inflammatory markers, blood pressure, physical activity, stress and eating behavior. RESULTS: There were significant main effects of time (P < 0.01), but no group main effects, or time-by-group interactions, for the change in fat mass (personalized: -2.1 [95% CI -2.9, -1.4] kg; control: -2.0 [95% CI -2.7, -1.3] kg) and body weight (personalized: -3.1 [95% CI -4.1, -2.1] kg; control: -3.3 [95% CI -4.2, -2.4] kg). The difference between groups in fat mass change was -0.1 kg (95% CI -1.2, 0.9 kg, P = 0.77). Both diets resulted in significant improvements in insulin resistance and lipid profile, but there were no significant differences between groups. CONCLUSION: Personalized dietary plans did not result in greater benefits over a generic, but generally healthy diet, in this 10-week clinical trial. Further studies are required to establish the soundness of different precision nutrition approaches, and translate this science into clinically relevant dietary advice to reduce the burden of obesity and its comorbidities. CLINICAL TRIAL REGISTRY: ClinicalTrials.gov registry (NCT04590989).


Assuntos
Obesidade , Redução de Peso , Adulto , Biomarcadores , Índice de Massa Corporal , Peso Corporal , Humanos , Lipídeos , Obesidade/terapia , Sobrepeso/terapia
6.
BMJ Open ; 12(3): e051285, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351696

RESUMO

INTRODUCTION: Personalised nutrition holds immense potential over conventional one-size-fits-all approaches for preventing and treating diet-related diseases, such as obesity. The current study aims to examine whether a personalised nutritional plan produces more favourable health outcomes than a standard approach based on general dietary recommendations in subjects with overweight or obesity and elevated waist circumference. METHODS AND ANALYSIS: This project is a 10-week parallel, double-blinded randomised intervention trial. We plan to include 100 adults aged 18-65 years interested in losing weight, with body mass index ≥27 but<40 kg/m2 and elevated waist circumference (males >94 cm; females >80 cm). Participants will be categorised into one of five predefined 'clusters' based on their individual metabolic biomarker profile and genetic background, and will be randomised in a 1:1 ratio to one of two groups: (1) personalised plan group that will receive cluster-specific meals every day for 6 days a week, in conjunction with a personalised behavioural change programme via electronic push notifications; or (2) control group that will receive meals following the general dietary recommendations in conjunction with generic health behaviour prompts. The primary outcome is the difference between groups (personalised vs control) in the change in fat mass from baseline. Secondary outcomes include changes in weight and body composition, fasting blood glucose and insulin, lipid profile, adipokines, inflammatory biomarkers, and blood pressure. Other outcomes involve measures of physical activity and sleep patterns, health-related quality of life, dietary intake, eating behaviour, and biomarkers of food intake. The effect of the intervention on the primary outcome will be analysed by means of linear mixed models. ETHICS AND DISSEMINATION: The protocol has been approved by the Ethics Committee of the Capital Region, Copenhagen, Denmark. Study findings will be disseminated through peer-reviewed publications, conference presentations and media outlets. TRIAL REGISTRATION NUMBER: NCT04590989.


Assuntos
Qualidade de Vida , Redução de Peso , Adulto , Biomarcadores , Dieta , Feminino , Humanos , Masculino , Obesidade/prevenção & controle , Poder Psicológico , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Eur J Nutr ; 61(4): 2079-2089, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34999928

RESUMO

PURPOSE: Replacing saturated fatty acids (SFA) with polyunsaturated fatty acids (PUFA) is associated with a reduced risk of cardiovascular disease. Yet, the changes in the serum metabolome after this replacement is not well known. Therefore, the present study aims to identify the metabolites differentiating diets where six energy percentage SFA is replaced with PUFA and to elucidate the association of dietary metabolites with cardiometabolic risk markers. METHODS: In an 8-week, double-blind, randomized, controlled trial, 99 moderately hyper-cholesterolemic adults (25-70 years) were assigned to a control diet (C-diet) or an experimental diet (Ex-diet). Both groups received commercially available food items with different fatty acid compositions. In the Ex-diet group, products were given where SFA was replaced mostly with n-6 PUFA. Fasting serum samples were analysed by untargeted ultra-performance liquid chromatography high-resolution mass spectrometry (UPLC-HRMS). Pre-processed data were analysed by double cross-validated Partial Least-Squares Discriminant Analysis (PLS-DA) to detect features differentiating the two diet groups. RESULTS: PLS-DA differentiated the metabolic profiles of the Ex-diet and the C-diet groups with an area under the curve of 0.83. The Ex-diet group showed higher levels of unsaturated phosphatidylcholine plasmalogens, an unsaturated acylcarnitine, and a secondary bile acid. The C-diet group was characterized by odd-numbered phospholipids and a saturated acylcarnitine. The Principal Component analysis scores of the serum metabolic profiles characterizing the diets were significantly associated with low-density lipoprotein cholesterol, total cholesterol, and triglyceride levels but not with glycaemia. CONCLUSION: The serum metabolic profiles confirmed the compliance of the participants based on their diet-specific metabolome after replacing SFA with mostly n-6 PUFA. The participants' metabolic profiles in response to the change in diet were associated with cardiovascular disease risk markers. This study was registered at clinicaltrials.gov as NCT01679496 on September 6th 2012.


Assuntos
Doenças Cardiovasculares , Gorduras na Dieta , Adulto , Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol , Dieta , Ácidos Graxos , Ácidos Graxos Insaturados , Humanos , Metaboloma , Fatores de Risco
8.
Curr Nutr Rep ; 11(2): 117-123, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35025088

RESUMO

PURPOSE OF REVIEW: Precision nutrition requires a solid understanding of the factors that determine individual responses to dietary treatment. We review the current state of knowledge in identifying human metabotypes - based on circulating biomarkers - that can predict weight loss or other relevant physiological outcomes in response to diet treatment. RECENT FINDINGS: Not many studies have been conducted in this area and the ones identified here are heterogeneous in design and methodology, and therefore difficult to synthesize and draw conclusions. The basis of the creation of metabotypes varies widely, from using thresholds for a single metabolite to using complex algorithms to generate multi-component constructs that include metabolite and genetic information. Furthermore, available studies are a mix of hypothesis-driven and hypothesis-generating studies, and most of them lack experimental testing in human trials. Although this field of research is still in its infancy, precision-based dietary intervention strategies focusing on the metabotype group level hold promise for designing more effective dietary treatments for obesity.


Assuntos
Dieta , Estado Nutricional , Biomarcadores/metabolismo , Humanos , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...