Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Chem Commun (Camb) ; 60(34): 4589-4592, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38577766

RESUMO

Herein, we report a copper(I)-free method for labeling the trifluoroacetyl group with positron-emitting carbon-11 (t1/2 = 20.4 min) or fluorine-18 (t1/2 = 109.8 min) as part of our exploration of radiolabeled fluoroforms to access new radiolabeled chemotypes of interest for tracer development. Treatment of alkyl esters and aryl esters, containing electron-donating or electron-withdrawing groups, with [11C/18F]fluoroform in the presence of strong base, gave [11C/18F]trifluoromethyl ketones as novel radiolabeling synthons in moderate to high yields within 15 minutes.

2.
J Nucl Med ; 65(5): 788-793, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423785

RESUMO

Phosphodiesterase-4D (PDE4D) has emerged as a significant target for treating neuropsychiatric disorders, but no PET radioligand currently exists for robustly quantifying human brain PDE4D to assist biomedical research and drug discovery. A prior candidate PDE4D PET radioligand, namely [11C]T1650, failed in humans because of poor time stability of brain PDE4D-specific signal (indexed by total volume of distribution), likely due to radiometabolites accumulating in brain. Its nitro group was considered to be a source of the brain radiometabolites. Methods: We selected 5 high-affinity and selective PDE4D inhibitors, absent of a nitro group, from our prior structure-activity relationship study for evaluation as PET radioligands. Results: All 5 radioligands were labeled with 11C (half-time, 20.4 min) in useful yields and with high molar activity. All displayed sizable PDE4D-specific signals in rhesus monkey brain. Notably, [11C]JMJ-81 and [11C]JMJ-129 exhibited excellent time stability of signal (total volume of distribution). Furthermore, as an example, [11C]JMJ-81 was found to be free of radiometabolites in ex vivo monkey brain, affirming that this radioligand can provide robust quantification of brain PDE4D with PET. Conclusion: Given their high similarity in structures and metabolic profiles, both [11C]JMJ-81 and [11C]JMJ-129 warrant further evaluation in human subjects. [11C]JMJ-129 shows a higher PDE4D specific-to-nonspecific binding ratio and will be the first to be evaluated.


Assuntos
Encéfalo , Radioisótopos de Carbono , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Macaca mulatta , Tomografia por Emissão de Pósitrons , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ligantes , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Masculino , Marcação por Isótopo , Inibidores da Fosfodiesterase 4/química , Humanos
3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256240

RESUMO

The short-lived positron-emitter carbon-11 (t1/2 = 20.4 min; ß+, 99.8%) is prominent for labeling tracers for use in biomedical research with positron emission tomography (PET). Carbon-11 is produced for this purpose with a cyclotron, nowadays almost exclusively by the 14N(p,α)11C nuclear reaction, either on nitrogen containing a low concentration of oxygen (0.1-0.5%) or hydrogen (~5%) to produce [11C]carbon dioxide or [11C]methane, respectively. These primary radioactive products can be produced in high yields and with high molar activities. However, only [11C]carbon dioxide has some utility for directly labeling PET tracers. Primary products are required to be converted rapidly and efficiently into secondary labeling synthons to provide versatile radiochemistry for labeling diverse tracer chemotypes at molecular positions of choice. This review surveys known gas phase transformations of carbon-11 and summarizes the important roles that many of these transformations now play for producing a broad range of labeling synthons in carbon-11 chemistry.


Assuntos
Pesquisa Biomédica , Dióxido de Carbono , Radioisótopos de Carbono , Hidrogênio
4.
Sci Rep ; 14(1): 1886, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253691

RESUMO

Chemogenetic tools are designed to control neuronal signaling. These tools have the potential to contribute to the understanding of neuropsychiatric disorders and to the development of new treatments. One such chemogenetic technology comprises modified Pharmacologically Selective Actuator Modules (PSAMs) paired with Pharmacologically Selective Effector Molecules (PSEMs). PSAMs are receptors with ligand-binding domains that have been modified to interact only with a specific small-molecule agonist, designated a PSEM. PSAM4 is a triple mutant PSAM derived from the α7 nicotinic receptor (α7L131G,Q139L,Y217F). Although having no constitutive activity as a ligand-gated ion channel, PSAM4 has been coupled to the serotonin 5-HT3 receptor (5-HT3R) and to the glycine receptor (GlyR). Treatment with the partner PSEM to activate PSAM4-5-HT3 or PSAM4-GlyR, causes neuronal activation or silencing, respectively. A suitably designed radioligand may enable selective visualization of the expression and location of PSAMs with positron emission tomography (PET). Here, we evaluated uPSEM792, an ultrapotent PSEM for PSAM4-GlyR, as a possible lead for PET radioligand development. We labeled uPSEM792 with the positron-emitter, carbon-11 (t1/2 = 20.4 min), in high radiochemical yield by treating a protected precursor with [11C]iodomethane followed by base deprotection. PET experiments with [11C]uPSEM792 in rodents and in a monkey transduced with PSAM4-GlyR showed low peak radioactivity uptake in brain. This low uptake was probably due to high polarity of the radioligand, as evidenced by physicochemical measurements, and to the vulnerability of the radioligand to efflux transport at the blood-brain barrier. These findings can inform the design of a more effective PSAM4 based PET radioligand, based on the uPSEM792 chemotype.


Assuntos
Receptores de Glicina , Serotonina , Receptores de Glicina/genética , Tomografia Computadorizada por Raios X , Transporte Biológico , Transdução de Sinais
5.
Org Lett ; 25(48): 8650-8654, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38012005

RESUMO

Aryliodonium precursors are widely applied for copper-free labeling of positron emission tomography (PET) tracers with fluorine-18. We assessed 18F-fluoroarene regioisomer formation in examples of these labeling methods. Aryliodonium ylides derived from Meldrum's acid bearing para electron-donating groups react with [18F]fluoride in acetonitrile to produce regioisomeric 18F-fluoroarenes via a competing aryne pathway. Regioisomer formation is decreased or absent in DMF. Analytically checking for the absence of the 18F-regioisomer from any particular PET tracer radiosynthesis using these or similar methods is recommended.

6.
ACS Pharmacol Transl Sci ; 6(11): 1632-1650, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974622

RESUMO

The tyrosine kinase, colony-stimulating factor 1 receptor (CSF1R), has attracted attention as a potential biomarker of neuroinflammation for imaging studies with positron emission tomography (PET), especially because of its location on microglia and its role in microglia proliferation. The development of an effective radiotracer for specifically imaging and quantifying brain CSF1R is highly challenging. Here we review the progress that has been made on PET tracer development and discuss issues that have arisen and which remain to be addressed and resolved.

7.
Trends Neurosci ; 46(11): 941-952, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734962

RESUMO

Positron emission tomography (PET) can be used as a noninvasive method to longitudinally monitor and quantify the expression of proteins in the brain in vivo. It can be used to monitor changes in biomarkers of mental health disorders, and to assess therapeutic interventions such as stem cell and molecular genetic therapies. The utility of PET monitoring depends on the availability of a radiotracer with good central nervous system (CNS) penetration and high selectivity for the target protein. This review evaluates existing methods for the visualization of reporter proteins and/or protein function using PET imaging, focusing on engineered systems, and discusses possible approaches for future success in the development of high-sensitivity and high-specificity PET reporter systems for the brain.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Humanos , Genes Reporter , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sistema Nervoso Central
8.
Eur J Nucl Med Mol Imaging ; 50(10): 2962-2970, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249618

RESUMO

PURPOSE: [18F]SF51 was previously found to have high binding affinity and selectivity for 18 kDa translocator protein (TSPO) in mouse brain. This study sought to assess the ability of [18F]SF51 to quantify TSPO in rhesus monkey brain. METHODS: Positron emission tomography (PET) imaging was performed in monkey brain (n = 3) at baseline and after pre-blockade with the TSPO ligands PK11195 and PBR28. TSPO binding was calculated as total distribution volume corrected for free parent fraction in plasma (VT/fP) using a two-tissue compartment model. Receptor occupancy and nondisplaceable uptake were determined via Lassen plot. Binding potential (BPND) was calculated as the ratio of specific binding to nondisplaceable uptake. Time stability of VT was used as an indirect probe to detect radiometabolite accumulation in the brain. In vivo and ex vivo experiments were performed in mice to determine the distribution of the radioligand. RESULTS: After [18F]SF51 injection, the concentration of brain radioactivity peaked at 2.0 standardized uptake value (SUV) at ~ 10 min and declined to 30% of the peak at 180 min. VT/fP at baseline was generally high (203 ± 15 mL· cm-3) and decreased by ~ 90% after blockade with PK11195. BPND of the whole brain was 7.6 ± 4.3. VT values reached levels similar to terminal 180-min values by 100 min and remained relatively stable thereafter with excellent identifiability (standard errors < 5%), suggesting that no significant radiometabolites accumulated in the brain. Ex vivo experiments in mouse brain showed that 96% of radioactivity was parent. No significant uptake was observed in the skull, suggesting a lack of defluorination in vivo. CONCLUSION: The results demonstrate that [18F]SF51 is an excellent radioligand that can quantify TSPO with a good ratio of specific to nondisplaceable uptake and has minimal radiometabolite accumulation in brain. Collectively, the results suggest that [18F]SF51 warrants further evaluation in humans.


Assuntos
Encéfalo , Receptores de GABA , Humanos , Camundongos , Animais , Receptores de GABA/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte/metabolismo , Ligação Proteica , Compostos Radiofarmacêuticos/metabolismo
9.
EJNMMI Res ; 13(1): 28, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017827

RESUMO

INTRODUCTION: We recently reported 11C-NR2B-SMe ([S-methyl-11C](R,S)-7-thiomethoxy-3-(4-(4-methyl-phenyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol) and its enantiomers as candidate radioligands for imaging the GluN2B subunit within rat N-methyl-D-aspartate receptors. However, these radioligands gave unexpectedly high and displaceable binding in rat cerebellum, possibly due to cross-reactivity with sigma-1 (σ1) receptors. This study investigated 11C-labeled enantiomers of a close analogue (7-methoxy-3-(4-(p-tolyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol; NR2B-Me) of 11C-NR2B-SMe as new candidate GluN2B radioligands. PET was used to evaluate these radioligands in rats and to assess potential cross-reactivity to σ1 receptors. METHODS: NR2B-Me was assayed for binding affinity and selectivity to GluN2B in vitro. 11C-NR2B-Me and its enantiomers were prepared by Pd-mediated treatment of boronic ester precursors with 11C-iodomethane. Brain PET scans were conducted after radioligand intravenous injection into rats. Various ligands for GluN2B receptors or σ1 receptors were administered at set doses in pre-blocking or displacement experiments to assess their impact on imaging data. 18F-FTC146 and enantiomers of 11C-NR2B-SMe were used for comparison. Radiometabolites from brain and plasma were measured ex vivo and in vitro. RESULTS: NR2B-Me enantiomers showed high GluN2B affinity and selectivity in vitro. 11C-NR2B-Me enantiomers gave high early whole rat brain uptake of radioactivity, including high uptake in cerebellum, followed by slower decline. Radioactivity in brain at 30 min ex vivo was virtually all unchanged radioligand. Only less lipophilic radiometabolites appeared in plasma. When 11C-(R)-NR2B-Me was used, three high-affinity GluN2B ligands-NR2B-SMe, Ro25-6981, and CO101,244-showed increasing pre-block of whole brain radioactivity retention with increasing dose. Two σ1 receptor antagonists, FTC146 and BD1407, were ineffective pre-blocking agents. Together, these results strongly resemble those obtained with 11C-NR2B-SMe enantiomers, except that 11C-NR2B-Me enantiomers showed faster reversibility of binding. When 18F-FTC146 was used as a radioligand, FTC146 and BD1407 showed strong pre-blocking effects whereas GluN2B ligands showed only weak blocking effects. CONCLUSION: 11C-NR2B-Me enantiomers showed specific binding to GluN2B receptors in rat brain in vivo. High unexpected specific binding in cerebellum was not due to σ1 receptors. Additional investigation is needed to identify the source of the high specific binding.

10.
ACS Pharmacol Transl Sci ; 6(4): 614-632, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37082755

RESUMO

[11C]CPPC has been advocated as a radioligand for colony-stimulating factor 1 receptor (CSF1R) with the potential for imaging neuroinflammation in human subjects with positron emission tomography (PET). This study sought to prepare fluoro analogs of CPPC with higher affinity to provide the potential for labeling with longer-lived fluorine-18 (t 1/2 = 109.8 min) and for delivery of higher CSF1R-specific PET signal in vivo. Seven fluorine-containing analogs of CPPC were prepared and four were found to have high inhibitory potency (IC50 in low to sub-nM range) and selectivity at CSF1R comparable with CPPC itself. One of these, a 4-fluoromethyl analog (Psa374), was investigated more deeply by labeling with carbon-11 (t 1/2 = 20.4 min) for PET studies in mouse and monkey. [11C]Psa374 showed high peak uptake in monkey brain but not in mouse brain. Pharmacological challenges revealed no CSF1R-specific binding in either species at baseline. [11C]CPPC also failed to show specific binding at baseline. Moreover, both [11C]Psa374 and [11C]CPPC showed brain efflux transporter substrate behavior in both species in vivo, although Psa374 did not show liability toward human efflux transporters in vitro. Further development of [11C]Psa374 in non-human primate models of neuroinflammation with demonstration of CSF1R-specific binding would be required to warrant the fluorine-18 labeling of Psa374 with a view to possible application in human subjects.

11.
Chemistry ; 29(24): e202204004, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36652272

RESUMO

Efficient methods for labeling aryl trifluoromethyl groups to provide novel radiotracers for use in biomedical research with positron emission tomography (PET) are keenly sought. We report a broad-scope method for labeling trifluoromethylarenes with either carbon-11 (t1/2 =20.4 min) or fluorine-18 (t1/2 =109.8 min) from readily accessible aryl(mesityl)iodonium salts. In this method, the aryl(mesityl)iodonium salt is treated rapidly with no-carrier-added [11 C]CuCF3 or [18 F]CuCF3 . The mesityl group acts as a spectator allowing radiolabeled trifluoromethylarenes to be obtained with very high chemoselectivity. Radiochemical yields from aryl(mesityl)iodonium salts bearing either electron-donating or electron-withdrawing groups at meta- or para- position are good to excellent (67-96 %). Ortho-substituted and otherwise sterically hindered trifluoromethylarenes still give good yields (15-34 %). Substituted heteroaryl(mesityl)iodonium salts are also viable substrates. The broad scope of this method was further exemplified by labeling a previously inaccessible target, [11 C]p-trifluoromethylphenyl boronic acid, as a potentially useful labeling synthon. In addition, fluoxetine, leflunomide, and 3-trifluoromethyl-4-aminopyridine, as examples of small drug-like molecules and candidate PET radioligands, were successfully labeled in high yields (69-81 %).


Assuntos
Tomografia por Emissão de Pósitrons , Sais , Sais/química , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Flúor/química , Cloreto de Sódio , Compostos Radiofarmacêuticos/química
12.
J Med Chem ; 66(2): 1543-1561, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36608175

RESUMO

A positron emission tomography (PET) radioligand for imaging phosphodiesterase 4D (PDE4D) would benefit drug discovery and the investigation of neuropsychiatric disorders. The most promising radioligand to date, namely, [11C]T1650, has shown unstable quantification in humans. Structural elaboration of [11C]T1650 was therefore deemed necessary. High target affinity in the low nM range is usually required for successful PET radioligands. In our PDE4D PET radioligand development, we formulated and optimized an empirical equation (log[IC50 (nM)] = P1 + P2 + P3 + P4) that well described the relationship between binding affinity and empirically derived values (P1-P4) for the individual fragments in four subregions commonly composing each inhibitor (R2 = 0.988, n = 62). This equation was used to predict compounds that would have high inhibitory potency. Fourteen new compounds were obtained with IC50 of 0.3-10 nM. Finally, eight compounds were judged to be worthy of future radiolabeling and evaluation as PDE4D PET radioligands.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Inibidores de Fosfodiesterase , Humanos , Inibidores de Fosfodiesterase/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Relação Quantitativa Estrutura-Atividade , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Relação Estrutura-Atividade , Ligantes , Compostos Radiofarmacêuticos/química
13.
J Nucl Med ; 64(1): 159-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798558

RESUMO

Both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) convert arachidonic acid to prostaglandin H2, which has proinflammatory effects. The recently developed PET radioligand 11C-PS13 has excellent in vivo selectivity for COX-1 over COX-2 in nonhuman primates. This study sought to evaluate the selectivity of 11C-PS13 binding to COX-1 in humans and assess the utility of 11C-PS13 to measure the in vivo potency of nonsteroidal antiinflammatory drugs. Methods: Baseline 11C-PS13 whole-body PET scans were obtained for 26 healthy volunteers, followed by blocked scans with ketoprofen (n = 8), celecoxib (n = 8), or aspirin (n = 8). Ketoprofen is a highly potent and selective COX-1 inhibitor, celecoxib is a preferential COX-2 inhibitor, and aspirin is a selective COX-1 inhibitor with a distinct mechanism that irreversibly inhibits substrate binding. Because blood cells, including platelets and white blood cells, also contain COX-1, 11C-PS13 uptake inhibition from blood cells was measured in vitro and ex vivo (i.e., using blood obtained during PET scanning). Results: High 11C-PS13 uptake was observed in major organs with high COX-1 density, including the spleen, lungs, kidneys, and gastrointestinal tract. Ketoprofen (1-75 mg orally) blocked uptake in these organs far more effectively than did celecoxib (100-400 mg orally). On the basis of the plasma concentration to inhibit 50% of the maximum radioligand binding in the spleen (in vivo IC 50), ketoprofen (<0.24 µM) was more than 10-fold more potent than celecoxib (>2.5 µM) as a COX-1 inhibitor, consistent with the in vitro potencies of these drugs for inhibiting COX-1. Blockade of 11C-PS13 uptake from blood cells acquired during the PET scans mirrored that in organs of the body. Aspirin (972-1,950 mg orally) blocked such a small percentage of uptake that its in vivo IC 50 could not be determined. Conclusion: 11C-PS13 selectively binds to COX-1 in humans and can measure the in vivo potency of nonsteroidal antiinflammatory drugs that competitively inhibit arachidonic acid binding to COX-1. These in vivo studies, which reflect the net effect of drug absorption and metabolism in all organs of the body, demonstrated that ketoprofen had unexpectedly high potency, that celecoxib substantially inhibited COX-1, and that aspirin acetylation of COX-1 did not block binding of the representative nonsteroidal inhibitor 11C-PS13.


Assuntos
Cetoprofeno , Animais , Humanos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Celecoxib/farmacologia , Cetoprofeno/farmacologia , Ácido Araquidônico/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Aspirina/farmacologia , Tomografia por Emissão de Pósitrons
14.
ACS Meas Sci Au ; 2(4): 370-376, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996540

RESUMO

Positron emission tomography (PET) uses many tracers labeled with fluorine-18 (t 1/2 = 109.8 min; ß+ 97%) for quantitative imaging of biochemical and physiological processes in animal and human subjects. In PET methodology, the radioactivity in a dose of an 18F-labeled tracer to be administered to a living subject is measured with a calibrated ionization chamber. This type of detector measures the radioactivity of a sample relative to those of certified amounts of longer-lived surrogate isotopes that are recommended for detector calibration. No alternative means for corroborating widely varying fluorine-18 radioactivity measurements from calibrated ionization chambers has been available. Here, we describe an independent nonradiometric method for this purpose. In this method, highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used to quantify the relative masses of the radioactive isotopologue ([18F]1) and the accompanying nonradioactive counterpart (carrier 1) in an 18F-labeled tracer preparation to give the mole ratio of [18F]1. High-performance liquid chromatography (HPLC) with a mass-calibrated absorbance detection is used alongside to provide a separate measurement of the aggregate mass of all isotopologues. The radioactivity of the radiotracer is then derived in becquerels (Bq) from these two measurements, plus Avogadro's number and the decay constant of fluorine-18. For the chosen example [18F]LSN3316612, the radioactivity values determined nonradiometrically and with a selected ionization chamber were in fair agreement. In addition, LC-MS/MS alone was found to provide an accurate measure of the half-life of fluorine-18.

15.
J Nucl Med ; 63(12): 1919-1924, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35772961

RESUMO

Phosphodiesterase-4 (PDE4), which metabolizes the second messenger cyclic adenosine monophosphate (cAMP), has 4 isozymes: PDE4A, PDE4B, PDE4C, and PDE4D. PDE4B and PDE4D have the highest expression in the brain and may play a role in the pathophysiology and treatment of depression and dementia. This study evaluated the properties of the newly developed PDE4B-selective radioligand 18F-PF-06445974 in the brains of rodents, monkeys, and humans. Methods: Three monkeys and 5 healthy human volunteers underwent PET scans after intravenous injection of 18F-PF-06445974. Brain uptake was quantified as total distribution volume (V T) using the standard 2-tissue-compartment model and serial concentrations of parent radioligand in arterial plasma. Results: 18F-PF-06445974 readily distributed throughout monkey and human brain and had the highest binding in the thalamus. The value of V T was well identified by a 2-tissue-compartment model but increased by 10% during the terminal portions (40 and 60 min) of the monkey and human scans, respectively, consistent with radiometabolite accumulation in the brain. The average human V T values for the whole brain were 9.5 ± 2.4 mL ⋅ cm-3 Radiochromatographic analyses in knockout mice showed that 2 efflux transporters-permeability glycoprotein (P-gp) and breast cancer resistance protein (BCRP)-completely cleared the problematic radiometabolite but also partially cleared the parent radioligand from the brain. In vitro studies with the human transporters suggest that the parent radioligand was a partial substrate for BCRP and, to a lesser extent, for P-gp. Conclusion: 18F-PF-06445974 quantified PDE4B in the human brain with reasonable, but not complete, success. The gold standard compartmental method of analyzing brain and plasma data successfully identified the regional densities of PDE4B, which were widespread and highest in the thalamus, as expected. Because the radiometabolite-induced error was only about 10%, the radioligand is, in the opinion of the authors, suitable to extend to clinical studies.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Proteínas de Neoplasias , Animais , Camundongos , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Proteínas de Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Haplorrinos/metabolismo , Compostos Radiofarmacêuticos/metabolismo
16.
J Nucl Med ; 63(Suppl 1): 53S-59S, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35649646

RESUMO

The most frequently studied target of neuroinflammation using PET is 18-kDa translocator protein, but its limitations have spurred the molecular imaging community to find more promising targets. This article reviews the development of PET radioligands for cyclooxygenase (COX) subtypes 1 and 2, enzymes that catalyze the production of inflammatory prostanoids in the periphery and brain. Although both isozymes produce the same precursor compound, prostaglandin H2, they have distinct functions based on their differential cellular localization in the periphery and brain. For example, COX-1 is located primarily in microglia, a resident inflammatory cell in the brain whose role in producing inflammatory cytokines is well documented. In contrast, COX-2 is located primarily in neurons and can be markedly upregulated by inflammatory and excitatory stimuli, but its functions are poorly understood. This article reviews these 2 isozymes as biomarkers of neuroinflammation, as well as the radioligands that have recently been developed to image them in animals and humans. To place this work into context, the properties of COX-1 and COX-2 are compared with 18-kDa translocator protein, with special consideration of their application in Alzheimer disease as a representative neurodegenerative disorder.


Assuntos
Doença de Alzheimer , Receptores de GABA , Animais , Biomarcadores/metabolismo , Ciclo-Oxigenase 2 , Isoenzimas , Doenças Neuroinflamatórias , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
17.
Curr Med Chem ; 29(28): 4862-4890, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35352645

RESUMO

The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.


Assuntos
Doenças Neuroinflamatórias , Receptores de GABA , Encéfalo/metabolismo , Humanos , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/genética , Receptores de GABA/metabolismo
18.
J Cereb Blood Flow Metab ; 42(8): 1398-1409, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35209743

RESUMO

The NMDA receptor GluN2B subunit is a target of interest in neuropsychiatric disorders but to date there is no selective radiotracer available to quantify its availability in vivo. Here we report direct comparisons in non-human primates of three GluN2B-targeting radioligands: (R)-[11C]NR2B-Me, (R)-[18F]OF-Me-NB1, and (S)-[18F]OF-NB1. Plasma free fraction, metabolism, tissue distribution and kinetics, and quantitative kinetic modeling methods and parameters were evaluated in two adult rhesus macaques. Free fraction in plasma was <2% for (R)-[11C]NR2B-Me and (R)-[18F]OF-Me-NB1 and higher for (S)-[18F]OF-NB1 (15%). All radiotracers showed good brain uptake and distribution throughout grey matter, with substantial (>68%) blockade across the brain by the GluN2B-targeting drug Co-101,244 (0.25 mg/kg), including in the cerebellum. Time-activity curves were well-fitted by the one-tissue compartment model, with volume of distribution values of 20-40 mL/cm3 for (R)-[11C]NR2B-Me, 8-16 mL/cm3 for (R)-[18F]OF-Me-NB1, and 15-35 mL/cm3 for (S)-[18F]OF-NB1. Estimates of regional non-displaceable binding potential were in the range of 2-3 for (R)-[11C]NR2B-Me and (S)-[18F]-OF-NB1, and 0.5-1 for (R)-[18F]OF-Me-NB1. Altogether, each radiotracer showed an acceptable profile for quantitative imaging of GluN2B. (S)-[18F]OF-NB1 has particularly promising imaging characteristics for potential translation into humans. However, the source of unexpected displaceable binding in the cerebellum for each of these compounds requires further investigation.


Assuntos
Compostos Radiofarmacêuticos , Receptores de N-Metil-D-Aspartato , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Macaca mulatta/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
19.
J Nucl Med ; 63(8): 1252-1258, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35027372

RESUMO

Because of its excellent ratio of specific to nondisplaceable uptake, the radioligand 11C-ER176 can successfully image 18-kDa translocator protein (TSPO), a biomarker of inflammation, in the human brain and accurately quantify target density in homozygous low-affinity binders. Our laboratory sought to develop an 18F-labeled TSPO PET radioligand based on ER176 with the potential for broader distribution. This study used generic 11C labeling and in vivo performance in the monkey brain to select the most promising among 6 fluorine-containing analogs of ER176 for subsequent labeling with longer-lived 18F. Methods: Six fluorine-containing analogs of ER176-3 fluoro and 3 trifluoromethyl isomers-were synthesized and labeled by 11C methylation at the secondary amide group of the respective N-desmethyl precursor. PET imaging of the monkey brain was performed at baseline and after blockade by N-butan-2-yl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide (PK11195). Uptake was quantified using radiometabolite-corrected arterial input function. The 6 candidate radioligands were ranked for performance on the basis of 2 in vivo criteria: the ratio of specific to nondisplaceable uptake (i.e., nondisplaceable binding potential [BPND]) and the time stability of total distribution volume (VT), an indirect measure of lack of radiometabolite accumulation in the brain. Results: Total TSPO binding was quantified as VT corrected for plasma free fraction (VT/fP) using Logan graphical analysis for all 6 radioligands. VT/fP was generally high at baseline (222 ± 178 mL·cm-3) and decreased by 70%-90% after preblocking with PK11195. BPND calculated using the Lassen plot was 9.6 ± 3.8; the o-fluoro radioligand exhibited the highest BPND (12.1), followed by the m-trifluoromethyl (11.7) and m-fluoro (8.1) radioligands. For all 6 radioligands, VT reached 90% of the terminal 120-min values by 70 min and remained relatively stable thereafter, with excellent identifiability (SEs < 5%), suggesting that no significant radiometabolites accumulated in the brain. Conclusion: All 6 radioligands had good BPND and good time stability of VT Among them, the o-fluoro, m-trifluoromethyl, and m-fluoro compounds were the 3 best candidates for development as radioligands with an 18F label.


Assuntos
Flúor , Receptores de GABA , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Flúor/metabolismo , Humanos , Tomografia por Emissão de Pósitrons/métodos , Quinazolinas , Compostos Radiofarmacêuticos/metabolismo , Receptores de GABA/metabolismo
20.
Mol Imaging Biol ; 24(3): 365-370, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34766247

RESUMO

PURPOSE: Cyclooxygenase-2 (COX-2) is a target for inflammation and colorectal cancer (CRC). This study evaluated the COX-2 neuro-PET radiopharmaceutical, [11C]MC1, in CRC xenograft mice. PROCEDURES: [11C]MC1 was evaluated in ICRscid mice with HT-29 and HCT-116 CRC xenografts, with high and low COX-2 expression, respectively, by immunohistochemistry, cellular uptake, dynamic PET/MR imaging, ex vivo biodistribution, and radiometabolite analysis. RESULTS: HT-29 xenografts were well visualized with [11C]MC1 using PET/MR. Time-activity curves revealed steady tumor radioactivity accumulation in HT-29 xenografts that plateaued from 40 to 60 min (3.07 ± 0.65 %ID/g) and was significantly reduced by pre-treatment with MC1 or celecoxib (1.62 ± 0.29 and 1.18 ± 0.21 %ID/g, respectively, p = 0.045 and p = 0.005). Radiometabolite analysis showed that [11C]MC1 accounted for >90 % of tumor radioactivity, with <10 % in plasma, at 40 min post-injection of the radiotracer. CONCLUSIONS: [11C]MC1 is a promising PET imaging agent for COX-2 in CRC and translation for cancer research should be considered.


Assuntos
Neoplasias Colorretais , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/metabolismo , Xenoenxertos , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...