Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6160, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039080

RESUMO

Sperm length is highly variable across species and many questions about its variation remain open. Although variation in body mass may affect sperm length evolution through its influence on multiple factors, the extent to which sperm length variation is linked to body mass remains elusive. Here, we use the Pareto multi-task evolution framework to investigate the relationship between sperm length and body mass across tetrapods. We find that tetrapods occupy a triangular Pareto front, indicating that trade-offs shape the evolution of sperm length in relation to body mass. By exploring the factors predicted to influence sperm length evolution, we find that sperm length evolution is mainly driven by sperm competition and clutch size, rather than by genome size. Moreover, the triangular Pareto front is maintained within endotherms, internal fertilizers, mammals and birds, suggesting similar evolutionary trade-offs within tetrapods. Finally, we demonstrate that the Pareto front is robust to phylogenetic dependencies and finite sampling bias. Our findings provide insights into the evolutionary mechanisms driving interspecific sperm length variation and highlight the importance of considering multiple trade-offs in optimizing reproductive traits.


Assuntos
Evolução Biológica , Mamíferos , Filogenia , Espermatozoides , Animais , Masculino , Espermatozoides/fisiologia , Aves/fisiologia , Tamanho da Ninhada , Tamanho do Genoma , Tamanho Corporal
2.
Mol Ecol ; 32(21): 5812-5822, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792396

RESUMO

Life-history theory suggests that ageing is one of the costs of reproduction. Accordingly, a higher reproductive allocation is expected to increase the deterioration of both the somatic and the germinal lines through enhanced telomere attrition. In most species, males' reproductive allocation mainly regards traits that increase mating and fertilization success, that is sexually selected traits. In this study, we tested the hypothesis that a higher investment in sexually selected traits is associated with a reduced relative telomere length (RTL) in the guppy (Poecilia reticulata), an ectotherm species characterized by strong pre- and postcopulatory sexual selection. We first measured telomere length in both the soma and the sperm over guppies' lifespan to see whether there was any variation in telomere length associated with age. Second, we investigated whether a greater investment in pre- and postcopulatory sexually selected traits is linked to shorter telomere length in both the somatic and the sperm germinal lines, and in young and old males. We found that telomeres lengthened with age in the somatic tissue, but there was no age-dependent variation in telomere length in the sperm cells. Telomere length in guppies was significantly and negatively correlated with sperm production in both tissues and life stages considered in this study. Our findings indicate that telomere length in male guppies is strongly associated with their reproductive investment (sperm production), suggesting that a trade-off between reproduction and maintenance is occurring at each stage of males' life in this species.


Assuntos
Poecilia , Sêmen , Animais , Masculino , Espermatozoides/fisiologia , Comportamento Sexual Animal , Reprodução/genética , Músculos , Poecilia/genética
3.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590950

RESUMO

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.


Assuntos
Charadriiformes , Animais , Charadriiformes/genética , Ecossistema , Rearranjo Gênico , Genômica , Cromossomos/genética
4.
Glob Chang Biol ; 29(19): 5552-5567, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37469036

RESUMO

Future climatic scenarios forecast increases in average temperatures as well as in the frequency, duration, and intensity of extreme events, such as heatwaves. Whereas behavioral adjustments can buffer direct physiological and fitness costs of exposure to excessive temperature in wild animals, these may prove more difficult during specific life stages when vagility is reduced (e.g., early developmental stages). By means of a nest cooling experiment, we tested the effects of extreme temperatures on different stages of reproduction in a cavity-nesting Mediterranean bird of prey, the lesser kestrel (Falco naumanni), facing a recent increase in the frequency of heatwaves during its breeding season. Nest temperature in a group of nest boxes placed on roof terraces was reduced by shading them from direct sunlight in 2 consecutive years (2021 and 2022). We then compared hatching failure, mortality, and nestling morphology between shaded and non-shaded (control) nest boxes. Nest temperature in control nest boxes was on average 3.9°C higher than in shaded ones during heatwaves, that is, spells of extreme air temperature (>37°C for ≥2 consecutive days) which hit the study area during the nestling-rearing phase in both years. Hatching failure markedly increased with increasing nest temperature, rising above 50% when maximum nest temperatures exceeded 44°C. Nestlings from control nest boxes showed higher mortality during heatwaves (55% vs. 10% in shaded nest boxes) and those that survived further showed impaired morphological growth (body mass and skeletal size). Hence, heatwaves occurring during the breeding period can have both strong lethal and sublethal impacts on different components of avian reproduction, from egg hatching to nestling growth. More broadly, these findings suggest that the projected future increases of summer temperatures and heatwave frequency in the Mediterranean basin and elsewhere in temperate areas may threaten the local persistence of even relatively warm-adapted species.


Assuntos
Comportamento de Nidação , Aves Predatórias , Animais , Comportamento de Nidação/fisiologia , Aves , Temperatura , Reprodução/fisiologia
5.
Biol Lett ; 19(6): 20230136, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37340810

RESUMO

Theoretical models indicate that the evolution of biparental care depends on how parents behaviourally negotiate their level of care in response to those of their partner and whether sexes and individuals consistently vary in their response (compensatory response). While the compensatory response has been widely investigated empirically, its repeatability has rarely been assessed. In this study, we used a reaction norm approach to investigate the repeatability of the compensatory offspring provisioning of a parent after temporary removal of its partner in the pied flycatcher (Ficedula hypoleuca) across different breeding seasons and partners. We found that only females partially compensated for the short-term removal of the partner and their response was significantly repeatable across years while breeding with different partners. This study highlights the importance of considering among individual differences in negotiation rules to better understand the role of negotiation mechanisms in the evolution of parental care strategies.


Assuntos
Passeriformes , Aves Canoras , Animais , Feminino , Passeriformes/fisiologia , Negociação , Comportamento Sexual Animal , Estações do Ano
6.
Proc Biol Sci ; 289(1982): 20220641, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36069009

RESUMO

Imminent predation risk affects mating behaviours in prey individuals in a multitude of ways that can theoretically impact the strength of sexual selection, as well as its operation on traits. However, empirical studies of the effects of imminent predation risk on sexual selection dynamics are still scarce. Here we explore how perceived predation affects: (1) the relationship between the opportunity for selection and the actual strength of selection on male traits; and (2) which traits contribute to male fitness and the shape of selection on these traits. We simulate two consecutive reproductive episodes, under control conditions and perceived predation risk using experimental populations of Trinidad guppies. The opportunity for selection is higher under predation risk compared to the control condition, but realised selection on traits remains unaffected. Pre- and postcopulatory traits follow complex patterns of nonlinear selection in both conditions. Differences in selection gradients deviate from predictions based on evolutionary and non-lethal effects of predation, the most notable being strong disruptive selection on courtship rate under predation risk. Our results demonstrate that sexual selection is sensitive to imminent predation risk perception and reinforce the notion that both trait-based and variance-based metrics should be employed for an informative quantification.


Assuntos
Poecilia , Animais , Evolução Biológica , Humanos , Masculino , Fenótipo , Comportamento Predatório , Trinidad e Tobago
7.
Biol Lett ; 17(8): 20210201, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343439

RESUMO

In many species, males can rapidly adjust their ejaculate performance in response to changing levels of sperm competition, an ability that is probably mediated by seminal fluid adaptive plasticity. In the black goby, Gobius niger, territorial males attach viscous ejaculate trails to the nest roof, from which sperm are slowly released into the water during the long-lasting spawning events. Sneaker males release their sperm in the vicinity of the nest, and territorial males try to keep them at a distance by patrolling their territory. We show here that territorial males' ejaculate trails released a higher proportion of their sperm in the presence of a single sneaker, but this proportion decreased when there were three sneakers, an effect that is most likely mediated by a change in the seminal fluid composition. Field observations showed that when multiple sneaking attempts occurred, territorial males spent more time outside the nest, suggesting that ejaculation rate and territory defence are traded-off. Altogether, these results suggest that the adjustment of sperm release from the ejaculate may be strategic, guaranteeing a more continuous concentration of the territorial male's sperm in the nest, although at a lower level, when he is engaged in prolonged territory defence outside the nest.


Assuntos
Perciformes , Comportamento Sexual Animal , Animais , Masculino , Espermatozoides , Territorialidade
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1813): 20200076, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070734

RESUMO

Fifty years of research on sperm competition has led to a very good understanding of the interspecific variation in sperm production traits. The reasons why this variation is often very large within populations have been less investigated. We suggest that the interaction between fluctuating environmental conditions and polyandry is a key phenomenon explaining such variation. We focus here on imminent predation risk (IPR). IPR impacts significantly several aspects of prey behaviour and reproduction, and it is expected to influence the operation of sexual selection before and after mating. We estimated the effect of IPR on the male opportunity for pre- and postcopulatory sexual selection in guppies (Poecilia reticulata), a livebearing fish where females prefer colourful males and mate multiply. We used a repeated-measures design, in which males were allowed to mate with different females either under IPR or in a predator-free condition. We found that IPR increased the total opportunity for sexual selection and reduced the relative contribution of postcopulatory sexual selection to male reproductive success. IPR is inherently variable and our results suggest that interspecific reproductive interference by predators may contribute towards maintaining the variation in sperm production within populations. This article is part of the theme issue 'Fifty years of sperm competition'.


Assuntos
Copulação , Cadeia Alimentar , Preferência de Acasalamento Animal , Poecilia/fisiologia , Animais , Peixes , Comportamento Predatório
9.
Philos Trans R Soc Lond B Biol Sci ; 375(1813): 20200077, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070736

RESUMO

The role of non-gametic components of the ejaculate (seminal fluid) in fertility and sperm competitiveness is now well established. Surprisingly, however, we know far less about female reproductive fluid (FRF) in the context of sexual selection, and insights into male-FRF interactions in the context of sperm competition have only recently emerged. Despite this limited knowledge, evidence from taxonomically diverse species has revealed insights into the effects of FRF on sperm traits that have previously been implicated in studies of sperm competition. Specifically, through the differential effects of FRF on a range of sperm traits, including chemoattraction and alterations in sperm velocity, FRF has been shown to exert positive phenotypic effects on the sperm of males that are preferred as mating partners, or those from the most compatible or genetically diverse males. Despite these tantalizing insights into the putative sexually selected functions of FRF, we largely lack a mechanistic understanding of these processes. Taken together, the evidence presented here highlights the likely ubiquity of FRF-regulated biases in fertilization success across a diverse range of taxa, thus potentially elevating the importance of FRF to other non-gametic components that have so far been studied largely in males. This article is part of the theme issue 'Fifty years of sperm competition'.


Assuntos
Secreções Corporais/fisiologia , Fertilização , Genitália Feminina/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Masculino , Espermatozoides/fisiologia
10.
J Evol Biol ; 33(9): 1294-1305, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32614995

RESUMO

Males of many species evolved the capability of adjusting their ejaculate phenotype in response to social cues to match the expected mating conditions. When females store sperm for a prolonged time, the expected fitness return of plastic adjustments of ejaculate phenotype may depend on the interval between mating and fertilization. Although prolonged female sperm storage (FSS) increases the opportunity for sperm competition, as a consequence of the longer temporal overlap of ejaculates from several males, it may also create variable selective forces on ejaculate phenotype, for example by exposing trade-offs between sperm velocity and sperm survival. We evaluated the relationship between the plasticity of ejaculate quality and FSS in the guppy, Poecilia reticulata, a polyandrous live-bearing fish in which females store sperm for several months and where stored sperm contribute significantly to a male's lifelong reproductive success. In this species, males respond to the perception of future mating opportunities by increasing the quantity (number) and quality (swimming velocity) of ready-to-use sperm (an anticipatory response called 'sperm priming'). Here we investigated (a) the effect of sperm priming on in vitro sperm viability at stripping and its temporal decline (as an estimate of sperm survival), and (b) the in vivo competitive fertilization success in relation to female sperm storage using artificial insemination. As expected, sperm-primed males produced more numerous and faster sperm, but with a reduced in vitro sperm viability at stripping and after 4 hr, compared with their counterparts. Artificial insemination revealed that the small (nonsignificant) advantage of primed sperm when fertilization immediately follows insemination is reversed when eggs are fertilized by female-stored sperm, weeks after insemination. By suggesting a plastic trade-off between sperm velocity and viability, these results demonstrate that prolonged female sperm storage generates divergent selection pressures on ejaculate phenotype.


Assuntos
Poecilia/fisiologia , Espermatozoides/fisiologia , Animais , Copulação , Feminino , Fertilização , Genitália Masculina/fisiologia , Masculino
11.
Zoology (Jena) ; 140: 125777, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32248058

RESUMO

This study considered possible sexual dimorphism in the relative lengths of the second, third and fourth digits (digit ratio), in calves. Furthermore, a different length of the bone structures of the third (3D) and of the fourth (4D) digits has been examined as an evolutionary adaptation to locomotion on soft ground. The length of the digital bones of the right fore-limb of 33 females and 15 male calves was measured in vivo using a portable X-ray machine. The vestigial structure of the second digit (2D), and 3D and 4D, from metacarpus to the third phalanx were considered in a mixed model, as well as some ratios between 2D and different parts of 3D or 4D (2D:3D and 2D:4D). A covariate for the mean finger length was considered for digit ratios to control for possible biases due to shape allometry. Shorter first phalanx and trotter were found in 3D than in 4D, and the reverse for the third phalanx. The 2D was significantly shorter in females, as well as the second phalanges of 3D and 4D. Significant sex differences in 2D:3D and 2D:4D were found for some digit parts of 3D and 4D and for the first phalanges of 3D:4D. These ratios were always shorter in females, in contrast to that found in most mammals. The asymmetry between 3D and 4D could mean a functional adaptation for locomotion. Sex differences in 2D:4D and 3D:4D were found, but with a reverse pattern than in most mammal species (males > females rather than males < females). In this regard digit ratio in calves was similar to that of Old World monkeys. This study is the first investigation of digit ratio in Ungulates, whose limbs differ from the limbs of most mammals, maintaining five digits. The reverse pattern of sex differences (digit ratios: males> females) could be due to the peculiar nature of the vestigial dewclaw of 2D and to the hormone patterns acting on this digit during development, but further research is required around this topic.


Assuntos
Bovinos/anatomia & histologia , Membro Anterior/anatomia & histologia , Dedos do Pé/anatomia & histologia , Animais , Desenvolvimento Ósseo , Osso e Ossos , Feminino , Masculino , Caracteres Sexuais
12.
J Evol Biol ; 33(6): 751-761, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32150779

RESUMO

The tight connection between immunity and reproduction has been studied for decades. However, basic knowledge at the molecular level of the effect of mating on immune function is still lacking in many taxa. Determining whether and how the immune system is engaged after mating is a crucial step in understanding post-mating mechanisms of reproduction and sexual selection. Here, we study the transcriptional changes in immunity-related genes caused by the ejaculate in the female reproductive tract using a model species for sexual selection studies, the guppy Poecilia reticulata. To study changes triggered by the ejaculate only, rather than caused by mating, we used artificial inseminations to transfer ejaculate into females. We then compared gene expression in the reproductive tract (gonoduct and ovary) of females artificially inseminated either with ejaculate or with a control solution, after 1 hr and after 6 hr. Overall, contact with ejaculate caused short-term changes in the expression of immune-related genes in the female reproductive tract, with a complex pattern of up- and down-regulation of immune-related pathways, but with clear indication of a marked down-regulation of the immune system shortly after ejaculate contact. This suggests a link between immune function and processes occurring between mating and fertilization in this species.


Assuntos
Copulação , Poecilia/imunologia , Animais , Feminino , Perfilação da Expressão Gênica , Genitália Feminina/imunologia , Genitália Feminina/metabolismo , Inseminação Artificial , Masculino , Poecilia/metabolismo
13.
Ecol Evol ; 10(4): 2030-2039, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128135

RESUMO

The perception of predation risk could affect prey phenotype both within and between generations (via parental effects). The response to predation risk could involve modifications in physiology, morphology, and behavior and can ultimately affect long-term fitness. Among the possible modifications mediated by the exposure to predation risk, telomere length could be a proxy for investigating the response to predation risk both within and between generations, as telomeres can be significantly affected by environmental stress. Maternal exposure to the perception of predation risk can affect a variety of offspring traits but the effect on offspring telomere length has never been experimentally tested. Using a live-bearing fish, the guppy (Poecilia reticulata), we tested if the perceived risk of predation could affect the telomere length of adult females directly and that of their offspring with a balanced experimental setup that allowed us to control for both maternal and paternal contribution. We exposed female guppies to the perception of predation risk during gestation using a combination of both visual and chemical cues and we then measured female telomere length after the exposure period. Maternal effects mediated by the exposure to predation risk were measured on offspring telomere length and body size at birth. Contrary to our predictions, we did not find a significant effect of predation-exposure neither on female nor on offspring telomere length, but females exposed to predation risk produced smaller offspring at birth. We discuss the possible explanations for our findings and advocate for further research on telomere dynamics in ectotherms.

14.
Mol Reprod Dev ; 87(4): 430-441, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32100427

RESUMO

In species where females mate with more than one male during the same reproductive event, males typically increase the number of sperm produced to boost their fertilization share. Sperm is not limitless, however, and theory predicts that their production will come at the cost of other fitness-related traits, such as body growth or immunocompetence, although these evolutionary trade-offs are notoriously difficult to highlight. To this end, we combined artificial selection for sperm production with a transcriptome analysis using Poecilia reticulata, a fish characterized by intense sperm competition in which the number of sperm transferred during mating is the most important predictor of fertilization success, yet sperm production is highly variable among males. We compared the brain and testes transcriptome in male guppies of lines artificially selected for high and low sperm production by identifying pivotal differentially expressed gene sets that may regulate spermatogenesis and immune function in this species. Despite the small differences in single genes' expression, gene set enrichment analysis showed coordinated gene expression differences associated with several pathways differentially regulated in the two selection lines. High sperm production males showed an upregulation of pathways related to immunosuppression and development of spermatozoa indicating a possible immunological cost of sperm production.


Assuntos
Fertilização/genética , Espermatogênese/genética , Espermatozoides/metabolismo , Transcriptoma , Regulação para Cima/genética , Alelos , Animais , Encéfalo/metabolismo , Frequência do Gene , Tolerância Imunológica/genética , Masculino , Poecilia , Polimorfismo de Nucleotídeo Único , RNA-Seq , Testículo/metabolismo
15.
Ecol Lett ; 23(3): 447-456, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31840374

RESUMO

Although it is often expected that adverse environmental conditions depress the expression of condition-dependent sexually selected traits, the full consequences of environmental change for the action of sexual selection, in terms of the opportunity for total sexual selection and patterns of phenotypic selection, are unknown. Here we show that dietary stress in guppies, Poecilia reticulata, reduces the expression of several sexually selected traits and increases the opportunity for total sexual selection (standardized variance in reproductive success) in males. Furthermore, our results show that dietary stress modulates the relative importance of precopulatory (mating success) and postcopulatory (relative fertilization success) sexual selection, and that the form of multivariate sexual selection (linear vs. nonlinear) depends on dietary regime. Overall, our results are consistent with a pattern of heightened directional selection on condition-dependent sexually selected traits under environmental stress, and underscore the importance of sexual selection in shaping adaptation in a changing world.


Assuntos
Preferência de Acasalamento Animal , Poecilia , Animais , Dieta , Masculino , Fenótipo , Reprodução , Comportamento Sexual Animal
16.
Proc Biol Sci ; 286(1897): 20182873, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963845

RESUMO

Traits associated with mating and fertilization success are expected to senesce with age, but limited information is available on their relative rates of senescence. In polyandrous species, male reproductive fitness depends on both mating and fertilization success. Because successful mating is a prerequisite for post-copulatory sexual selection, ejaculate traits are expected to senesce faster than pre-copulatory traits, as pre-copulatory sexual selection is often deemed to be stronger than post-copulatory sexual selection. This pattern has generally been found in the few empirical studies conducted so far. We tested this prediction in the guppy ( Poecilia reticulata), a livebearing fish characterized by intense sperm competition, by comparing the expression of male sexual traits at two ages (four and nine months). Contrary to prediction, we found that post-copulatory traits senesced at a significantly slower rate than pre-copulatory traits. We also looked at whether early investment in those sexual traits affects longevity, and the interaction between sperm age (duration of sperm storage inside the male) and male age. Our results suggest that the relative senescence rate of pre- and post-copulatory sexual traits may vary among species with different mating systems and ecology.


Assuntos
Envelhecimento , Copulação , Preferência de Acasalamento Animal , Poecilia/fisiologia , Fatores Etários , Animais , Características de História de Vida , Masculino , Espermatozoides/fisiologia
17.
Reproduction ; 157(4): R109-R126, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668523

RESUMO

Despite serving the primary objective of ensuring that at least one sperm cell reaches and fertilises an ovum, the male ejaculate (i.e. spermatozoa and seminal fluid) is a compositionally complex 'trait' that can respond phenotypically to subtle changes in conditions. In particular, recent research has shown that environmentally and genetically induced changes to ejaculates can have implications for offspring traits that are independent of the DNA sequence encoded into the sperm's haploid genome. In this review, we compile evidence from several disciplines and numerous taxonomic systems to reveal the extent of such ejaculate-mediated paternal effects (EMPEs). We consider a number of environmental and genetic factors that have been shown to impact offspring phenotypes via ejaculates, and where possible, we highlight the putative mechanistic pathways by which ejaculates can act as conduits for paternal effects. We also highlight how females themselves can influence EMPEs, and in some cases, how maternally derived sources of variance may confound attempts to test for EMPEs. Finally, we consider a range of putative evolutionary implications of EMPEs and suggest a number of potentially useful approaches for exploring these further. Overall, our review confirms that EMPEs are both widespread and varied in their effects, although studies reporting their evolutionary effects are still in their infancy.


Assuntos
Evolução Biológica , Ejaculação/fisiologia , Herança Paterna , Espermatozoides/fisiologia , Animais , Feminino , Masculino
18.
Curr Zool ; 64(2): 205-211, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30402061

RESUMO

Producing sperm is costly and males have been selected to strategically adjust their sperm production and/or expenditure according to the fitness return associated with a specific mating. For example, males respond to fluctuations in the mating opportunities by adjusting the number of "ready" sperm. This phenomenon is known as "sperm priming" and is interpreted as a strategy to economize the investment in sperm. The cost and benefits of the sperm priming response, however, are expected to depend on a male's baseline sperm production (BSP) in the absence of females, because of the different risk of sperm depletion and the nonlinearly increasing costs of sperm production. We tested this prediction in 2 replicated lines of male guppies Poecilia reticulata that were artificially selected for high and low BSP. BSP has a large genetic variance and a high sire heritability in guppies, and males respond to the perceived mating opportunities by increasing the number of "ready" sperm. We investigated whether males with a different BSP differed in their sperm priming response. We found that when the perceived mating opportunities increased, males from low-sperm lines had a stronger sperm priming response than those from high-sperm lines. This result suggests that adaptive plasticity in sperm priming has the potential to evolve in response to different levels of BSP. The comparison between guppy populations with different levels of sperm production would allow to test whether the pattern reported here is also observed at the interpopulation level.

19.
Biol Lett ; 14(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29848779

RESUMO

Male and female gametes are often embedded in fluids that are produced by gonads and other reproductive tissues. Female reproductive fluids, usually called ovarian fluid (OF), which often constitute a relevant volumetric component of the egg mass, are rich in ions, sugars and proteins, and are involved in several functions, from protecting gametes to facilitating fertilization, and often act as mediators of post-mating sexual selection. Despite their applied and evolutionary importance, we know virtually nothing about the costs of female reproductive fluid production. We investigated the effect of nutritional condition on OF quality by experimentally manipulating the diet of two groups of female guppies (Poecilia reticulata) which were maintained for 20 days either on a restricted diet or had ad libitum access to food. In this species, OF enhances sperm swimming longevity and velocity (a predictor of sperm competition success) and mediates post-copulatory inbreeding avoidance. We found that sperm velocity was significantly lower in the OF of diet-restricted females, indicating that OF quality is dependent on female nutritional condition. Our results demonstrate that OF represents a non-trivial component of female reproductive investment and provides a tool to investigate which OF constituents are involved in modulating OF-sperm interactions and fertilization.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Ovário/fisiologia , Poecilia/fisiologia , Motilidade dos Espermatozoides/fisiologia , Animais , Líquidos Corporais/fisiologia , Dieta/veterinária , Feminino , Endogamia , Masculino , Preferência de Acasalamento Animal , Estado Nutricional/fisiologia
20.
Evolution ; 72(3): 698-706, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29337356

RESUMO

Sperm competition is taxonomically widespread in animals and is usually associated with large sperm production, being the number of sperm in the competing pool the prime predictor of fertilization success. Despite the strong postcopulatory selection acting directionally on sperm production, its genetic variance is often very high. This can be explained by trade-offs between sperm production and traits associated with mate acquisition or survival, that may contribute to generate an overall stabilizing selection. To investigate this hypothesis, we first artificially selected male guppies (Poecilia reticulata) for high and low sperm production for three generations, while simultaneously removing sexual selection. Then, we interrupted artificial selection and restored sexual selection. Sperm production responded to divergent selection in one generation, and when we restored sexual selection, both high and low lines converged back to the mean sperm production of the original population within two generations, indicating that sperm number is subject to strong stabilizing total sexual selection (i.e., selection acting simultaneously on all traits associated with reproductive success). We discuss the possible mechanisms responsible for the maintenance of high genetic variability in sperm production despite strong selection acting on it.


Assuntos
Características de História de Vida , Preferência de Acasalamento Animal , Poecilia/fisiologia , Seleção Genética , Espermatozoides/fisiologia , Animais , Inseminação , Masculino , Poecilia/genética , Contagem de Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA