Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 236(6): 2075-2090, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35808905

RESUMO

Lignin is one of the main factors causing lignocellulosic biomass recalcitrance to enzymatic hydrolysis. Glasshouse-grown poplars severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE 1 (CAD1), the enzyme catalysing the last step in the monolignol-specific branch of lignin biosynthesis, have increased saccharification yields and normal growth. Here, we assess the performance of these hpCAD poplars in the field under short rotation coppice culture for two consecutive rotations of 1 yr and 3 yr. While 1-yr-old hpCAD wood had 10% less lignin, 3-yr-old hpCAD wood had wild-type lignin levels. Because of their altered cell wall composition, including elevated levels of cinnamaldehydes, both 1-yr-old and 3-yr-old hpCAD wood showed enhanced saccharification yields upon harsh alkaline pretreatments (up to +85% and +77%, respectively). In contrast with previous field trials with poplars less severely downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD), the hpCAD poplars displayed leaning phenotypes, early bud set, early flowering and yield penalties. Moreover, hpCAD wood had enlarged vessels, decreased wood density and reduced relative and free water contents. Our data show that the phenotypes of CAD-deficient poplars are strongly dependent on the environment and underpin the importance of field trials in translating basic research towards applications.


Assuntos
Lignina , Populus , Populus/genética , Oxirredutases do Álcool , Biomassa
2.
Mol Biol Evol ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700212

RESUMO

Transition metals are essential for a wealth of metabolic reactions, but their concentrations need to be tightly controlled across cells and cell compartments, as metal excess or imbalance has deleterious effects. Metal homeostasis is achieved by a combination of metal transport across membranes and metal binding to a variety of molecules. Gene duplication is a key process in evolution, as emergence of advantageous mutations on one of the copies can confer a new function. Here, we report that the poplar genome contains two paralogues encoding NRAMP3 metal transporters localized in tandem. All Populus species analyzed had two copies of NRAMP3, whereas only one could be identified in Salix species indicating that duplication occurred when the two genera separated. Both copies are under purifying selection and encode functional transporters, as shown by expression in the yeast heterologous expression system. However, genetic complementation revealed that only one of the paralogues has retained the original function in release of metals stored in the vacuole previously characterized in A. thaliana. Confocal imaging showed that the other copy has acquired a distinct localization to the Trans Golgi Network (TGN). Expression in poplar suggested that the copy of NRAMP3 localized on the TGN has a novel function in the control of cell-to-cell transport of manganese. This work provides a clear case of neo-functionalization through change in the subcellular localization of a metal transporter as well as evidence for the involvement of the secretory pathway in cell-to-cell transport of manganese.

3.
Plant Physiol ; 187(3): 1374-1386, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618081

RESUMO

The enzymatic hydrolysis of cellulose into glucose, referred to as saccharification, is severely hampered by lignins. Here, we analyzed transgenic poplars (Populus tremula × Populus alba) expressing the Brachypodium (Brachypodium distachyon) p-coumaroyl-Coenzyme A monolignol transferase 1 (BdPMT1) gene driven by the Arabidopsis (Arabidopsis thaliana) Cinnamate 4-Hydroxylase (AtC4H) promoter in the wild-type (WT) line and in a line overexpressing the Arabidopsis Ferulate 5-Hydroxylase (AtF5H). BdPMT1 encodes a transferase which catalyzes the acylation of monolignols by p-coumaric acid (pCA). Several BdPMT1-OE/WT and BdPMT1-OE/AtF5H-OE lines were grown in the greenhouse, and BdPMT1 expression in xylem was confirmed by RT-PCR. Analyses of poplar stem cell walls (CWs) and of the corresponding purified dioxan lignins (DLs) revealed that BdPMT1-OE lignins were as p-coumaroylated as lignins from C3 grass straws. For some transformants, pCA levels reached 11 mg·g-1 CW and 66 mg·g-1 DL, exceeding levels in Brachypodium or wheat (Triticum aestivum) samples. This unprecedentedly high lignin p-coumaroylation affected neither poplar growth nor stem lignin content. Interestingly, p-coumaroylation of poplar lignins was not favored in BdPMT1-OE/AtF5H-OE transgenic lines despite their high frequency of syringyl units. However, lignins of all BdPMT1-OE lines were structurally modified, with an increase of terminal unit with free phenolic groups. Relative to controls, this increase argues for a reduced polymerization degree of BdPMT1-OE lignins and makes them more soluble in cold NaOH solution. The p-coumaroylation of poplar samples improved the saccharification yield of alkali-pretreated CW, demonstrating that the genetically driven p-coumaroylation of lignins is a promising strategy to make wood lignins more susceptible to alkaline treatments used during the industrial processing of lignocellulosics.


Assuntos
Ácidos Cumáricos/química , Lignina/análise , Populus/metabolismo , Madeira/metabolismo , Lignina/química , Populus/química
4.
Mycorrhiza ; 30(5): 555-566, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32647969

RESUMO

This study investigates the impact of the alteration of the monolignol biosynthesis pathway on the establishment of the in vitro interaction of poplar roots either with a mutualistic ectomycorrhizal fungus or with a pathogenic root-knot nematode. Overall, the five studied transgenic lines downregulated for caffeoyl-CoA O-methyltransferase (CCoAOMT), caffeic acid O-methyltransferase (COMT), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD) or both COMT and CAD displayed a lower mycorrhizal colonisation percentage, indicating a lower ability for establishing mutualistic interaction than the wild-type. The susceptibility to root-knot nematode infection was variable in the five lines, and the CAD-deficient line was found to be less susceptible than the wild-type. We discuss these phenotypic differences in the light of the large shifts in the metabolic profile and gene expression pattern occurring between roots of the CAD-deficient line and wild-type. A role of genes related to trehalose metabolism, phytohormones, and cell wall construction in the different mycorrhizal symbiosis efficiency and nematode sensitivity between these two lines is suggested. Overall, these results show that the alteration of plant metabolism caused by the repression of a single gene within phenylpropanoid pathway results in significant alterations, at the root level, in the response towards mutualistic and pathogenic associates. These changes may constrain plant fitness and biomass production, which are of economic importance for perennial industrial crops such as poplar.


Assuntos
Micorrizas , Nematoides , Populus , Animais , Regulação da Expressão Gênica de Plantas , Lignina , Simbiose
5.
Front Plant Sci ; 11: 105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153612

RESUMO

Wood is a complex tissue that fulfills three major functions in trees: water conduction, mechanical support and nutrient storage. In Angiosperm trees, vessels, fibers and parenchyma rays are respectively assigned to these functions. Cell wall composition and structure strongly varies according to cell type, developmental stages and environmental conditions. This complexity can therefore hinder the study of the molecular mechanisms of wood formation, underlying the construction of its properties. However, this can be circumvented thanks to the development of cell-specific approaches and microphenotyping. Here, we present a non-destructive microphenotyping method based on attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) microspectroscopy. We applied this technique to three types of poplar wood: normal wood of staked trees (NW), tension and opposite wood of artificially tilted trees (TW, OW). TW is produced by angiosperm trees in response to mechanical strains and is characterized by the presence of G fibers, exhibiting a thick gelatinous extra-layer, named G-layer, located in place of the usual S2 and/or S3 layers. By contrast, OW located on the opposite side of the trunk is totally deprived of fibers with G-layers. We developed a workflow for hyperspectral image analysis with both automatic pixel clustering according to cell wall types and identification of differentially absorbed wavenumbers (DAWNs). As pixel clustering failed to assign pixels to ray S-layers with sufficient efficiency, the IR profiling and identification of DAWNs were restricted to fiber and vessel cell walls. As reported elsewhere, this workflow identified cellulose as the main component of the G-layers, while the amount in acetylated xylans and lignins were shown to be reduced. These results validate ATR-FTIR technique for in situ characterization of G layers. In addition, this study brought new information about IR profiling of S-layers in TW, OW and NW. While OW and NW exhibited similar profiles, TW fibers S-layers combined characteristics of TW G-layers and of regular fiber S-layers. Unexpectedly, vessel S-layers of the three kinds of wood showed significant differences in IR profiling. In conclusion, ATR-FTIR microspectroscopy offers new possibilities for studying cell wall composition at the cell level.

7.
Comput Struct Biotechnol J ; 17: 599-610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080566

RESUMO

Genetic engineering is a powerful tool to steer bio-oil composition towards the production of speciality chemicals such as guaiacols, syringols, phenols, and vanillin through well-defined biomass feedstocks. Our previous work demonstrated the effects of lignin biosynthesis gene modification on the pyrolysis vapour compositions obtained from wood derived from greenhouse-grown poplars. In this study, field-grown poplars downregulated in the genes encoding CINNAMYL ALCOHOL DEHYDROGENASE (CAD), CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and CAFFEOYL-CoA O-METHYLTRANSFERASE (CCoAOMT), and their corresponding wild type were pyrolysed in a Py-GC/MS. This work aims at capturing the effects of downregulation of the three enzymes on bio-oil composition using principal component analysis (PCA). 3,5-methoxytoluene, vanillin, coniferyl alcohol, 4-vinyl guaiacol, syringol, syringaldehyde, and guaiacol are the determining factors in the PCA analysis that are the substantially affected by COMT, CAD and CCoAOMT enzyme downregulation. COMT and CAD downregulated transgenic lines proved to be statistically different from the wild type because of a substantial difference in S and G lignin units. The sCAD line lead to a significant drop (nearly 51%) in S-lignin derived compounds, while CCoAOMT downregulation affected the least (7-11%). Further, removal of extractives via pretreatment enhanced the statistical differences among the CAD transgenic lines and its wild type. On the other hand, COMT downregulation caused 2-fold reduction in S-derived compounds compared to G-derived compounds. This study manifests the applicability of PCA analysis in tracking the biological changes in biomass (poplar in this case) and their effects on pyrolysis-oil compositions.

8.
Front Plant Sci ; 9: 1729, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546375

RESUMO

[This corrects the article DOI: 10.3389/fpls.2018.01443.].

9.
Front Plant Sci ; 9: 1443, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333845

RESUMO

The incorporation of DNA into plant genomes followed by regeneration of non-chimeric stable plants (transformation) remains a major challenge for most plant species. Forest trees are particularly difficult as a result of their biochemistry, aging, desire for clonal fidelity, delayed reproduction, and high diversity. We review two complementary approaches to transformation that appear to hold promise for forest trees.

11.
Planta ; 247(4): 887-897, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29270675

RESUMO

MAIN CONCLUSION: CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.


Assuntos
Oxirredutases do Álcool/deficiência , Lignina/fisiologia , Populus/fisiologia , Lignina/metabolismo , Microfibrilas/metabolismo , Microfibrilas/fisiologia , Populus/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Resistência à Tração , Difração de Raios X
12.
Plant Physiol ; 175(3): 1018-1039, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28878036

RESUMO

In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula × Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10% reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1, coniferaldehyde is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S'(8-8)S' and lignin or converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly increased glucose (up to +81%) and xylose (up to +153%) release, suggesting that down-regulating CAD1 is a promising strategy for improving lignocellulosic biomass for the sugar platform industry.


Assuntos
Acroleína/análogos & derivados , Oxirredutases do Álcool/metabolismo , Metabolismo dos Carboidratos , Traqueófitas/enzimologia , Acroleína/química , Acroleína/metabolismo , Álcalis/farmacologia , Biomassa , Parede Celular/metabolismo , Lignina/química , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas , Metanol/química , Modelos Moleculares , Oxirredução , Fenóis/metabolismo , Fenótipo , Pigmentação , Plantas Geneticamente Modificadas , Populus/genética , Solubilidade , Espectrometria de Massas em Tandem
13.
Planta ; 246(5): 857-878, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28699115

RESUMO

MAIN CONCLUSION: RG-I and AGP, but not XG, are associated to the building of the peculiar mechanical properties of tension wood. Hardwood trees produce tension wood (TW) with specific mechanical properties to cope with environmental cues. Poplar TW fibers have an additional cell wall layer, the G-layer responsible for TW mechanical properties. We investigated, in two poplar hybrid species, the molecules potentially involved in the building of TW mechanical properties. First, we evaluated the distribution of the different classes of non-cellulosic polysaccharides during xylem fiber differentiation, using immunolocalization. In parallel, G-layers were isolated and their polysaccharide composition determined. These complementary approaches provided information on the occurrence of non-cellulosic polysaccharides during G-fiber differentiation. We found no evidence of the presence of xyloglucan (XG) in poplar G-layers, whereas arabinogalactan proteins (AGP) and rhamnogalacturonan type I pectins (RG-I) were abundant, with an apparent progressive loss of RG-I side chains during G-layer maturation. Similarly, the intensity of immunolabeling signals specific for glucomannans and glucuronoxylans varies during G-layer maturation. RG-I and AGP are best candidate matrix components to be responsible for TW mechanical properties.


Assuntos
Mucoproteínas/análise , Pectinas/análise , Polissacarídeos/análise , Populus/metabolismo , Parede Celular/metabolismo , Mananas/análise , Mananas/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Populus/citologia , Populus/crescimento & desenvolvimento , Árvores , Madeira/citologia , Madeira/genética , Madeira/metabolismo , Xilema/citologia , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
14.
Trends Plant Sci ; 21(4): 283-285, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26897457

RESUMO

Biotechnology can greatly improve the efficiency of forest tree breeding for the production of biomass, energy, and materials. However, EU regulations impede the market introduction of genetically modified (GM) trees so their socioeconomic and environmental benefits are not realized. European policy makers should concentrate on a science-based regulatory process.


Assuntos
Biotecnologia/legislação & jurisprudência , União Europeia , Plantas Geneticamente Modificadas , Árvores/genética , Biomassa , Cruzamento , Florestas , Regulamentação Governamental
15.
Proc Natl Acad Sci U S A ; 111(2): 845-50, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379366

RESUMO

Lignin is one of the main factors determining recalcitrance to enzymatic processing of lignocellulosic biomass. Poplars (Populus tremula x Populus alba) down-regulated for cinnamoyl-CoA reductase (CCR), the enzyme catalyzing the first step in the monolignol-specific branch of the lignin biosynthetic pathway, were grown in field trials in Belgium and France under short-rotation coppice culture. Wood samples were classified according to the intensity of the red xylem coloration typically associated with CCR down-regulation. Saccharification assays under different pretreatment conditions (none, two alkaline, and one acid pretreatment) and simultaneous saccharification and fermentation assays showed that wood from the most affected transgenic trees had up to 161% increased ethanol yield. Fermentations of combined material from the complete set of 20-mo-old CCR-down-regulated trees, including bark and less efficiently down-regulated trees, still yielded ∼ 20% more ethanol on a weight basis. However, strong down-regulation of CCR also affected biomass yield. We conclude that CCR down-regulation may become a successful strategy to improve biomass processing if the variability in down-regulation and the yield penalty can be overcome.


Assuntos
Aldeído Oxirredutases/deficiência , Biocombustíveis , Etanol/metabolismo , Lignina/metabolismo , Populus/metabolismo , Bélgica , Biomassa , Fermentação , França , Plantas Geneticamente Modificadas , Populus/genética
16.
PLoS One ; 8(9): e73819, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040084

RESUMO

Genetic modifications of trees may provide many benefits, e.g. increase production, and mitigate climate change and herbivore impacts on forests. However, genetic modifications sometimes result in unintended effects on innate traits involved in plant-herbivore interactions. The importance of intentional changes in plant defence relative to unintentional changes and the natural variation among clones used in forestry has not been evaluated. By a combination of biochemical measurements and bioassays we investigated if insect feeding on GM aspens is more affected by intentional (induction Bt toxins) than of unintentional, non-target changes or clonal differences in innate plant defence. We used two hybrid wildtype clones (Populus tremula x P. tremuloides and Populus tremula x P. alba) of aspen that have been genetically modified for 1) insect resistance (two Bt lines) or 2) reduced lignin properties (two lines COMT and CAD), respectively. Our measurements of biochemical properties suggest that unintended changes by GM modifications (occurring due to events in the transformation process) in innate plant defence (phenolic compounds) were generally smaller but fundamentally different than differences seen among different wildtype clones (e.g. quantitative and qualitative, respectively). However, neither clonal differences between the two wildtype clones nor unintended changes in phytochemistry influenced consumption by the leaf beetle (Phratora vitellinae). By contrast, Bt induction had a strong direct intended effect as well as a post experiment effect on leaf beetle consumption. The latter suggested lasting reduction of beetle fitness following Bt exposure that is likely due to intestinal damage suffered by the initial Bt exposure. We conclude that Bt induction clearly have intended effects on a target species. Furthermore, the effect of unintended changes in innate plant defence traits, when they occur, are context dependent and have in comparison to Bt induction probably less pronounced effect on targeted herbivores.


Assuntos
Besouros/fisiologia , Resistência à Doença/genética , Populus/genética , Populus/parasitologia , Animais , Cromatografia Líquida de Alta Pressão , Comportamento Alimentar/fisiologia , Glicosídeos/análise , Interações Hospedeiro-Parasita , Hibridização Genética , Fenóis/análise , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/parasitologia , Plantas Geneticamente Modificadas , Populus/química , Quercetina/análogos & derivados , Quercetina/análise
17.
PLoS One ; 8(3): e59207, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516610

RESUMO

Wood from biomass plantations with fast growing tree species such as poplars can be used as an alternative feedstock for production of biofuels. To facilitate utilization of lignocellulose for saccharification, transgenic poplars with modified or reduced lignin contents may be useful. However, the potential impact of poplars modified in the lignification pathway on ectomycorrhizal (EM) fungi, which play important roles for plant nutrition, is not known. The goal of this study was to investigate EM colonization and community composition in relation to biomass and nutrient status in wildtype (WT, Populus tremula × Populus alba) and transgenic poplar lines with suppressed activities of cinnamyl alcohol dehydrogenase, caffeate/5-hydroxyferulate O-methyltransferase, and cinnamoyl-CoA reductase in a biomass plantation. In different one-year-old poplar lines EM colonization varied from 58% to 86%, but the EM community composition of WT and transgenic poplars were indistinguishable. After two years, the colonization rate of all lines was increased to about 100%, but separation of EM communities between distinct transgenic poplar genotypes was observed. The differentiation of the EM assemblages was similar to that found between different genotypes of commercial clones of Populus × euramericana. The transgenic poplars exhibited significant growth and nutrient element differences in wood, with generally higher nutrient accumulation in stems of genotypes with lower than in those with higher biomass. A general linear mixed model simulated biomass of one-year-old poplar stems with high accuracy (adjusted R(2) = 97%) by two factors: EM colonization and inverse wood N concentration. These results imply a link between N allocation and EM colonization, which may be crucial for wood production in the establishment phase of poplar biomass plantations. Our data further support that multiple poplar genotypes regardless whether generated by transgenic approaches or conventional breeding increase the variation in EM community composition in biomass plantations.


Assuntos
Lignina/biossíntese , Micorrizas/fisiologia , Populus/metabolismo , Populus/microbiologia , Biomassa , Populus/crescimento & desenvolvimento
18.
Tree Physiol ; 32(9): 1129-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22933655

RESUMO

The lignification process in poplar tension wood lignified cell wall layers, specifically the S(1) and S(2) layers and the compound middle lamella (CML), was analysed using ultraviolet (UV) and transmission electron microscopy (TEM). Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the lignified cell wall layers had completed their lignification before the deposition of G-layers, or, on the contrary, if lignification of these layers was still active during G-layer formation. Observations using UV microscopy and TEM indicated that both UV absorbance and the degree of potassium permanganate staining increased in the CML and S(1) and S(2) layers during G-layer formation, suggesting that the lignification of these lignified layers is still in progress during G-layer formation. In the context of the cell-autonomous monolignol synthesis hypothesis, our observations suggest that monolignols must go through the developing G-layer during the lignification of CML and the S(1) and S(2) layers. The alternative hypothesis of external synthesis (in the rays) does not require that monolignols go through the G-layer before being deposited in the CML, or the S(1) and S(2) layers. Interestingly, the previous observation of lignin in the poplar G-layer was not confirmed with the microscopy techniques used in the present study.


Assuntos
Parede Celular/ultraestrutura , Lignina/química , Populus/química , Parede Celular/química , Lignina/análise , Microscopia Eletrônica de Transmissão , Microscopia Ultravioleta , Brotos de Planta/química , Brotos de Planta/ultraestrutura , Populus/ultraestrutura , Coloração e Rotulagem , Madeira/química , Madeira/ultraestrutura
19.
PLoS One ; 7(1): e30640, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292004

RESUMO

One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremula×Populus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance.


Assuntos
Bacillus thuringiensis/genética , Toxinas Bacterianas/genética , Besouros/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/prevenção & controle , Populus/crescimento & desenvolvimento , Populus/genética , Animais , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Besouros/efeitos dos fármacos , Besouros/fisiologia , Técnicas de Transferência de Genes , Interações Hospedeiro-Parasita/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Modelos Teóricos , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/parasitologia , Distribuição Aleatória , Sobrevida , Regulação para Cima
20.
BMC Res Notes ; 5: 102, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22339987

RESUMO

BACKGROUND: Plant LIM domain proteins may act as transcriptional activators of lignin biosynthesis and/or as actin binding and bundling proteins. Plant LIM genes have evolved in phylogenetic subgroups differing in their expression profiles: in the whole plant or specifically in pollen. However, several poplar PtLIM genes belong to uncharacterized monophyletic subgroups and the expression patterns of the LIM gene family in a woody plant have not been studied. FINDINGS: In this work, the expression pattern of the twelve duplicated poplar PtLIM genes has been investigated by semi quantitative RT-PCR in different vegetative and reproductive tissues. As in other plant species, poplar PtLIM genes were widely expressed in the tree or in particular tissues. Especially, PtXLIM1a, PtXLIM1b and PtWLIM1b genes were preferentially expressed in the secondary xylem, suggesting a specific function in wood formation. Moreover, the expression of these genes and of the PtPLIM2a gene was increased in tension wood. Western-blot analysis confirmed the preferential expression of PtXLIM1a protein during xylem differentiation and tension wood formation. Genes classified within the pollen specific PLIM2 and PLIM2-like subgroups were all strongly expressed in pollen but also in cottony hairs. Interestingly, pairs of duplicated PtLIM genes exhibited different expression patterns indicating subfunctionalisations in specific tissues. CONCLUSIONS: The strong expression of several LIM genes in cottony hairs and germinating pollen, as well as in xylem fibers suggests an involvement of plant LIM domain proteins in the control of cell expansion. Comparisons of expression profiles of poplar LIM genes with the published functions of closely related plant LIM genes suggest conserved functions in the areas of lignin biosynthesis, pollen tube growth and mechanical stress response. Based on these results, we propose a novel nomenclature of poplar LIM domain proteins.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas com Domínio LIM/genética , Filogenia , Proteínas de Plantas/genética , Populus/genética , Western Blotting , Flores/genética , Proteínas com Domínio LIM/classificação , Proteínas com Domínio LIM/metabolismo , Floema/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Caules de Planta/genética , Populus/classificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Xilema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...