Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 13(47)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29116668

RESUMO

At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, a series of core@shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@…, …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-shell NPs. As revealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical impact on their luminescence characteristics. Although the increased amount of Yb3+ ions boosts UCNP performance by amplifying the absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy migration to the surface, thereby reducing the overall energy transfer efficiency to the activator ions. The results provide yet another proof that UC phosphor chemistry combined with materials engineering through intentional core@shell structures may help to fine-tune the luminescence features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and display technologies.

2.
Nanoscale ; 9(24): 8288-8297, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28585957

RESUMO

The current frontier in nanomaterials engineering is to intentionally design and fabricate heterogeneous nanoparticles with desirable morphology and composition, and to integrate multiple functionalities through highly controlled epitaxial growth. Here we show that heterogeneous doping of Nd3+ ions following a core-shell design already allows three optical functions, namely efficient (η > 72%) light-to-heat conversion, bright NIR emission, and sensitive (SR > 0.1% K-1) localized temperature quantification, to be built within a single ca. 25 nm nanoparticle. Importantly, all these optical functions operate within the transparent biological window of the NIR spectral region (λexc ∼ 800 nm, λemi ∼ 860 nm), in which light scattering and absorption by tissues and water are minimal. We find NaNdF4 as a core is efficient in absorbing and converting 808 nm light to heat, while NaYF4:1%Nd3+ as a shell is a temperature sensor based on the ratio-metric luminescence reading but an intermediate inert spacer shell, e.g. NaYF4, is necessary to insulate the heat convertor and thermometer by preventing the possible Nd-Nd energy relaxation. Moreover, we notice that while temperature sensitivity and luminescence intensity are optically stable, increased excitation intensity to generate heat above room temperature may saturate the sensing capacity of temperature feedback. We therefore propose a dual beam photoexcitation scheme as a solution for possible light-induced hyperthermia treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...