Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Razi Inst ; 77(6): 2097-2104, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-37274897

RESUMO

In recent years, a nanoparticle-based strategy has shown that non-denatured protein toxins can be used to enhance the appropriate immune response. Once the toxin reacts between the nanoparticles and the protein (toxin), it loses its toxicity because it does not attach to its ligand at the cell surface. The results of the nanoparticle and toxin complex show that the nanoparticles facilitate the internal release of the toxin. Clostridium perfringens beta toxin is produced by Clostridium perfringens type B and C, and diarrhea is the most important disease caused in newborn lambs. When beta toxin forms a complex with nanoparticles, the reaction between the toxin and the nanoparticle leads to the formation of a new form of nanoparticle in which the toxin loses its lethality due to its involvement; therefore, it becomes a toxoid. The nanoparticles used in this research are of poly lactic-co-glycolic acid (PLGA) type, one of the most developed biodegradable polymers. This study aimed to isolate and purify Clostridium perfringens beta toxin and produce its complex with PLGA nanoparticles to form a non-toxic structure. In this study, Clostridium perfringens beta toxin type B was isolated using ammonium sulfate precipitation and gel filtration chromatography. Toxin assay was performed in vivo (lethal dose [LD50]) and in vitro by sodium dodecyl sulphate-polyacrylamide gel electrophoresis at each stage, and the quantity of purified toxin was calculated to be 10 mg/ml. Afterward, the beta toxin antigen was used as the basis for the preparation of nanotoxoid candidates with nanoparticle formulation. Moreover, the PLGA polymer and water-oil-water methods were used to fabricate nanoparticles. Under optimal conditions, nanoparticles without antigen with an average size of 100 nm and zeta potential of -23.28 mV, as well as nanoparticles containing antigen with an average size of 120 nm and zeta potential of -18.2 mV, were prepared. When nanoparticles are injected into mice with the beta toxin, the toxin becomes a toxoid with no toxicity effects, and it cannot bind to its receptors and reveal its effects. In this study, the mice showed mild symptoms in one case, and none of them died. The beta and PLGA toxin model could also be applied as a candidate to study the release and immunization of the target animal. In order to achieve antigen regulation using natural polymers, it is recommended to conduct a comparative study between nanoparticles based on natural polymers.


Assuntos
Clostridium perfringens , Polímeros , Animais , Camundongos , Ovinos , Relação Dose-Resposta a Droga , Toxoides
2.
Arch Razi Inst ; 76(1): 7-16, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33818953

RESUMO

Clostridium perfringens and Clostridium septicum are gram-positive, anaerobic, spore-forming rods and pathogens for humans and livestock, which are widespread in nature as well as human and animal digestive systems. C. perfringens produces numerous different exoproteins, which are various systems of action. The major C. perfringens toxins include alpha, beta, epsilon, and iota. C. perfringens are classified into five groups (A-E) on the basis of the production of these lethal toxins. Furthermore, toxins secreted from C. septicum include alpha, beta, delta, and gamma. Epsilon and alpha toxins of C. perfringens and C. septicum are the major causes of enterotoxemia and braxy in sheep and goats, respectively. The production of recombinant immunogenic proteins of these bacteria using suitable expression vectors and expression prokaryotic hosts can be a convenient method for the reduction of the costs and production time of clostridial anaerobic vaccines. In the present study, recombinant Escherichia coli strain TOP10 containing pJETεα was used for the evaluation of C. perfringens type D and C. septicum epsilon-alpha fusion protein using different commercial vectors. After the extraction of pJETεα from the recombinant cell, it was digested by NdeI and XhoI restriction enzymes and subcloned into pET22b (+), pET26b (+), and pGEM-B1 expression vectors in E. coli/Rosetta and E. coli/BL21 (DE3). The expression of recombinant fusion toxin was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting in three different temperatures, various isopropyl β-D-1-thiogalactopyranoside (IPTG) gradients, and different times using pGEMεα, pET22εα, and pET26εα vectors in E. coli/Rosetta and E. coli/BL21 (DE3). According to the obtained results, recombinant E. coli/Rosetta/pET22εα showed better expression at a temperature of 37°C after 6 h of induction by IPTG.


Assuntos
Toxinas Bacterianas , Escherichia coli , Animais , Clostridium perfringens/genética , Escherichia coli/genética , Expressão Gênica , Proteínas Recombinantes/genética , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...