Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(21): 9677-9682, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37902816

RESUMO

In recent years, molecularly imprinted polymer nanoparticles (nanoMIPs) have proven to be an attractive alternative to antibodies in diagnostic and therapeutic applications. However, several key questions remain: how suitable are intracellular epitopes as targets for nanoMIP binding? And to what extent can protein function be modulated via targeting specific epitopes? To investigate this, three extracellular and three intracellular epitopes of epidermal growth factor receptor (EGFR) were used as templates for the synthesis of nanoMIPs which were then used to treat cancer cells with different expression levels of EGFR. It was observed that nanoMIPs imprinted with epitopes from the intracellular kinase domain and the extracellular ligand binding domain of EGFR caused cells to form large foci of EGFR sequestered away from the cell surface, caused a reduction in autophosphorylation, and demonstrated effects on cell viability. Collectively, this suggests that intracellular domain-targeting nanoMIPs can be a potential new tool for cancer therapy.


Assuntos
Impressão Molecular , Nanopartículas , Polímeros Molecularmente Impressos , Epitopos , Polímeros/química , Nanopartículas/química , Receptores ErbB/metabolismo
2.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365575

RESUMO

Molecularly imprinted polymer nanoparticles (nanoMIPs) are high affinity synthetic receptors which show promise as imaging and therapeutic agents. Comprehensive analysis of the in vivo behaviour of nanoMIPs must be performed before they can be considered for clinical applications. This work reports the solid-phase synthesis of nanoMIPs and an investigation of their biodistribution, clearance and cytotoxicity in a rat model following both intravenous and oral administration. These nanoMIPs were found in each harvested tissue type, including brain tissue, implying their ability to cross the blood-brain barrier. The nanoMIPs were cleared from the body via both faeces and urine. Furthermore, we describe an immunogenicity study in mice, demonstrating that nanoMIPs specific for a cell surface protein showed moderate adjuvant properties, whilst those imprinted for a scrambled peptide showed no such behaviour. Given their ability to access all tissue types and their relatively low cytotoxicity, these results pave the way for in vivo applications of nanoMIPs.

3.
Polymers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458345

RESUMO

Current state-of-the-art techniques for the solid phase synthesis of molecularly imprinted polymer (MIP) nanoparticles typically rely on amino silanes for the immobilisation of template molecules prior to polymerisation. An investigation into commonly used amino silanes identified a number of problematic side reactions which negatively affect the purity and affinity of these polymers. Iodo silanes are presented as a superior alternative in a case study describing the synthesis of MIPs against epitopes of a common cancer biomarker, epidermal growth factor receptor (EGFR). The proposed iodo silane outperformed the amino silane by all metrics tested, showing high purity and specificity, and nanomolar affinity for the target peptide.

4.
J Mol Recognit ; 33(4): e2824, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31742810

RESUMO

A library of 17 nanoparticles made of acrylate and methacrylate copolymers is prepared, characterized, and screened against six epitopes of adeno-associated viruses (AAV)-neutralizing antibodies to assess their affinity and specificity. Peptide epitopes are immobilized onto the surface of glass beads, packed in filtration microplates, and incubated with fluorescein-labelled nanoparticles. Following intense washing, the affinity of nanoparticles to immobilized epitopes is assessed by measuring the fluorescence of captured nanoparticles. The results show that polar monomers, acrylic acid in particular, have a positive impact on polymer affinity towards all peptides used in this study. The presence of hydrophobic monomers, on other hand, has a negative impact on polymer binding. The composition of peptides used in this study has no noticeable impact on the affinity of synthesized nanoparticles. The affinity of nanoparticles with the highest affinity to peptide targets does not exceed millimolar level. Overall, it is found that the synthesized library showed modest affinity but lacked specificity, which should be further "tuned," for example, by using molecular imprinting to achieve an acceptable level of affinity and specificity for practical application.


Assuntos
Epitopos/metabolismo , Nanopartículas/química , Polímeros/química , Anticorpos Neutralizantes/metabolismo , Dependovirus/patogenicidade , Epitopos/genética , Impressão Molecular
5.
Sci Rep ; 7(1): 11537, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912505

RESUMO

Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

6.
Anal Chem ; 84(4): 2038-43, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22264028

RESUMO

A new format for the microtiter plate-based assays was proposed. The novelty involves the use of disk-shaped inserts for immobilization of biological and chemical reagents. The internal opening of the disks allows measurements of the reactions by standard microtiter plate readers without any additional steps involving liquid handling. Ideally the plate end-users just have to add the sample and take the measurement without any need of multiple reagent additions or transfer of the liquid to a different plate. The novel assay format also allows handling of reagents which are not soluble in an aqueous environment. As a proof of concept we describe here several model reactions which are compatible with microtiter plate format, such as monitoring enzymatic reactions catalyzed by glucose oxidase (GOx) and urease, measurements of proteins by BCA assay, analysis of pH, and concentration of antioxidants. The "mix and match" approach in the disk-shape format allows multiplexing and could be particularly useful for high throughput screening. One of the potential application areas for this novel assay format could be in a multianalyte system for measurement of clinically relevant analytes in primary care.


Assuntos
Bioensaio , Glucose Oxidase/análise , Microquímica/métodos , Miniaturização/instrumentação , Urease/análise , Antioxidantes/metabolismo , Aspergillus niger/enzimologia , Fabaceae/enzimologia , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/metabolismo , Miniaturização/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...