Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113375, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37980572

RESUMO

Membraneless organelles, or biomolecular condensates, enable cells to compartmentalize material and processes into unique biochemical environments. While specific, attractive molecular interactions are known to stabilize biomolecular condensates, repulsive interactions, and the balance between these opposing forces, are largely unexplored. Here, we demonstrate that repulsive and attractive electrostatic interactions regulate condensate stability, internal mobility, interfaces, and selective partitioning of molecules both in vitro and in cells. We find that signaling ions, such as calcium, alter repulsions between model Ddx3 and Ddx4 condensate proteins by directly binding to negatively charged amino acid sidechains and effectively inverting their charge, in a manner fundamentally dissimilar to electrostatic screening. Using a polymerization model combined with generalized stickers and spacers, we accurately quantify and predict condensate stability over a wide range of pH, salt concentrations, and amino acid sequences. Our model provides a general quantitative treatment for understanding how charge and ions reversibly control condensate stability.


Assuntos
Organelas , Proteínas , Organelas/metabolismo , Proteínas/metabolismo , DNA Helicases/metabolismo , RNA Helicases DEAD-box/metabolismo , Íons/análise , Íons/metabolismo
2.
Protein Sci ; 31(11): e4449, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36107026

RESUMO

Proteins are tiny models of biological complexity: specific interactions among their many amino acids cause proteins to fold into elaborate structures, assemble with other proteins into higher-order complexes, and change their functions and structures upon binding other molecules. These complex features are classically thought to evolve via long and gradual trajectories driven by persistent natural selection. But a growing body of evidence from biochemistry, protein engineering, and molecular evolution shows that naturally occurring proteins often exist at or near the genetic edge of multimerization, allostery, and even new folds, so just one or a few mutations can trigger acquisition of these properties. These sudden transitions can occur because many of the physical properties that underlie these features are present in simpler proteins as fortuitous by-products of their architecture. Moreover, complex features of proteins can be encoded by huge arrays of sequences, so they are accessible from many different starting points via many possible paths. Because the bridges to these features are both short and numerous, random chance can join selection as a key factor in explaining the evolution of molecular complexity.


Assuntos
Evolução Molecular , Proteínas , Proteínas/genética , Proteínas/química , Seleção Genética , Aminoácidos/química , Mutação
3.
Nature ; 583(7816): E26, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32587402

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nature ; 581(7809): 480-485, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461643

RESUMO

Most proteins associate into multimeric complexes with specific architectures1,2, which often have functional properties such as cooperative ligand binding or allosteric regulation3. No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous α- and ß-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical 'missing link' through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct α- and ß-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein's structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Assuntos
Evolução Molecular , Hemoglobinas/metabolismo , Regulação Alostérica , Sítios de Ligação/genética , Heme/metabolismo , Hemoglobinas/química , Humanos , Ferro/metabolismo , Modelos Moleculares , Oxigênio/metabolismo , Multimerização Proteica/genética , Estrutura Quaternária de Proteína/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...