Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 772046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899797

RESUMO

A Bowman-Birk protease, i.e., Mucuna pruriens trypsin inhibitor (MPTI), was purified from the seeds by 55.702-fold and revealed a single trypsin inhibitor on a zymogram with a specific activity of 202.31 TIU/mg of protein. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions, the protease trypsin inhibitor fraction [i.e., trypsin inhibitor non-reducing (TINR)] exhibited molecular weights of 74 and 37 kDa, and under reducing conditions [i.e., trypsin inhibitor reducing (TIR)], 37 and 18 kDa. TINR-37 revealed protease inhibitor activity on native PAGE and 37 and 18 kDa protein bands on SDS-PAGE. TINR-74 showed peaks corresponding to 18.695, 37.39, 56.085, and 74.78 kDa on ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization/quadrupole time-of-flight-mass spectrometry (ESI/QTOF-MS). Similarly, TINR-37 displayed 18.695 and 37.39 kDa peaks. Furthermore, TIR-37 and TIR-18 exhibited peaks corresponding to 37.39 and 18.695 kDa. Multiple peaks observed by the UPLC-ESI/QTOF analysis revealed the multimeric association, confirming the characteristic and functional features of Bowman-Birk inhibitors (BBIs). The multimeric association helps to achieve more stability, thus enhancing their functional efficiency. MPTI was found to be a competitive inhibitor which again suggested that it belongs to the BBI family of inhibitors, displayed an inhibitor constant of 1.3 × 10-6 M, and further demonstrates potent anti-inflammatory activity. The study provided a comprehensive basis for the identification of multimeric associates and their therapeutic potential, which could elaborate the stability and functional efficiency of the MPTI in the native state from M. pruriens.

2.
Front Plant Sci ; 12: 714066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630462

RESUMO

Targeted mutagenesis is now becoming the most favored methodology to improve traits in popular rice cultivars selectively. Understanding the genetic basis of already available mutants could be the first step in designing such experiment. Improved White Ponni (IWP), a popularly grown South Indian rice variety, was subjected to γ irradiation to develop WP-22-2, an M6 line superior in semi-dwarfism, early flowering, and high yield, and it has grain qualities similar to those of IWP. The exogenous application of gibberellic acid (GA3) on WP-22-2 resulted in the elongation of shorter internodes to a level similar to IWP. The expression profiling of six genes regulating plant height showed their differential expression pattern at different time points post GA3 treatment. Furthermore, the sequencing of WP-22-2 and IWP genomes revealed several single nucleotide polymorphisms (SNPs) and large-scale deletions in WP-22-2. The conversion of functional codons to stop codons was observed in OsGA20ox2 and OsFBX267, which have been reported to have roles in regulating semi-dwarfism and early flowering, respectively. The loss of function of OsGA20ox2 and OsFBX267 in WP-22-2 resulted in reduced plant height as well as early flowering, and the same has been confirmed by editing OsGA20ox2 in the rice variety Pusa Basmati1 (PB1) using the CRISPR-Cas9 approach. The targeted editing of OsGA20ox2 in PB1 conferred shorter plant height to the edited lines compared with the wild type. Altogether, the study provides evidence on mutating OsGA20ox2 and OsFBX267 genes to develop early maturing and semi-dwarf varieties that can be released to farmers after functional characterization and field trials.

3.
PLoS One ; 16(1): e0245603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33449977

RESUMO

Introduction of semi-dwarfism and early maturity in rice cultivars is important to achieve improved plant architecture, lodging resistance and high yield. Gamma rays induced mutations are routinely used to achieve these traits. We report the development of a semi-dwarf, early maturing and high-yielding mutant of rice cultivar 'Improved White Ponni', a popular cosmopolitan variety in south India preferred for its superior grain quality traits. Through gamma rays induced mutagenesis, several mutants were developed and subjected to selection up to six generations (M6) until the superior mutants were stabilized. In the M6 generation, significant reduction in days to flowering (up to 11.81% reduction) and plant height (up to 40% reduction) combined with an increase in single plant yield (up to 45.73% increase) was observed in the mutant population. The cooking quality traits viz., linear elongation ratio, breadthwise expansion ratio, gel consistency and gelatinization temperature of the mutants were similar to the parent variety Improved White Ponni. The genetic characterization with SSR markers showed variability between the semi-dwarf-early mutants and the Improved White Ponni. Gibberellin responsiveness study and quantitative real-time PCR showed a faulty gibberellin pathway and epistatic control between the genes such as OsKOL4 and OsBRD2 causing semi-dwarfism in a mutant. These mutants have potential as new rice varieties and can be used as new sources of semi-dwarfism and earliness for improving high grain quality rice varieties.


Assuntos
Raios gama , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Mutagênese , Oryza , Giberelinas/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento
4.
Sci Rep ; 10(1): 17203, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057204

RESUMO

Horsegram (Macrotyloma uniflorum (Lam.) Verdc.) is a drought hardy food and fodder legume of Indo-African continents with diverse germplasm sources demonstrating alternating mechanisms depicting contrasting adaptations to different climatic zones. Tissue specific expression of genes contributes substantially to location specific adaptations. Regulatory networks of such adaptive genes are elucidated for downstream translational research. MicroRNAs are small endogenous regulatory RNAs which alters the gene expression profiles at a particular time and type of tissue. Identification of such small regulatory RNAs in low moisture stress hardy crops can help in cross species transfer and validation confirming stress tolerance ability. This study outlined prediction of conserved miRNAs from transcriptome shotgun assembled sequences and EST sequences of horsegram. We could validate eight out of 15 of the identified miRNAs to demonstrate their role in deficit moisture stress tolerance mechanism of horsegram variety Paiyur1 with their target networks. The putative mumiRs were related to other food legumes indicating the presence of gene regulatory networks. Differential miRNA expression among drought specific tissues indicted the probable energy conservation mechanism. Targets were identified for functional characterization and regulatory network was constructed to find out the probable pathways of post-transcriptional regulation. The functional network revealed mechanism of biotic and abiotic stress tolerance, energy conservation and photoperiod responsiveness.


Assuntos
Adaptação Fisiológica/genética , Fabaceae/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Aclimatação/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas de Plantas/genética , Processamento Pós-Transcricional do RNA/genética , Estresse Fisiológico/genética , Transcriptoma/genética
5.
Plant Physiol Biochem ; 48(7): 527-33, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20137962

RESUMO

Arabidopsis thaliana was thought to contain two spermine synthase genes, ACAULIS 5 (ACL5) and SPMS. Recent investigations, however, revealed that the ACL5 gene encodes thermospermine synthase. In this study, we have established a simple method to separate two isomers of tetraamine, spermine and thermospermine, in extracts from plant tissues of less than 500 mg. Polyamines (PAs) extracted from plant tissues were benzoylated, and the derivatives were completely resolved by high-performance liquid chromatography on a C18 reverse-phase column, by eluting with 42% (v/v) acetonitrile in water in an isocratic manner at 30 degrees C and monitoring at 254 nm. The relevance of the method was confirmed by co-chromatography with respective PAs and by the PA analysis of the single- and double-mutants of acl5 and spms, which could not synthesize thermospermine and/or spermine, respectively. Furthermore, with this method, we monitored the thermospermine contents in various tissues of A. thaliana and found that stems and flowers contain two- to three-fold more thermospermine compared to whole seedlings and mature leaves. The presence of thermospermine was confirmed in Oryza sativa and Lycopersicon pesculentum. Finally we addressed whether salinity stress changes the contents of PAs including thermospermine in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Enzimas/metabolismo , Genes de Plantas , Poliaminas/análise , Tolerância ao Sal/fisiologia , Espermina/análogos & derivados , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enzimas/genética , Flores , Isomerismo , Solanum lycopersicum/química , Mutação , Oryza/química , Extratos Vegetais/química , Caules de Planta , Poliaminas/metabolismo , Espermina/análise
6.
Planta ; 220(1): 129-39, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15278454

RESUMO

We report here the isolation and characterization of a new endo-1,3-beta-glucanase (1,3-beta-GLU) cDNA, OsGLN2, that is expressed both in flowers and in germinating seeds of rice (Oryza sativa L.). The isolated OsGLN2 gene encoded a protein which displayed 72%, 93% and 92% identity at the amino acid level with those encoded by barley GII, rice Gns4 and glu1 1,3-beta-GLU genes, respectively. A GST-OsGLN2 recombinant protein expressed in Escherichia coli preferentially hydrolyzed Laminaria digitata 1,3;1,6-beta-glucan and liberated only oligosaccharides, suggesting that the enzyme can be classified as a 1,3-beta-GLU. Northern analysis with a 3'-UTR gene-specific probe revealed that OsGLN2 is expressed exclusively in the paleae and lemmas during flowering, and no expression of OsGLN2 was detected in other tissues such as leaf blades, leaf sheaths, stems, nodes and roots in mature rice plants. The OsGLN2 gene is also expressed in germinating seeds, where its expression is predominant in endosperms rather than embryos. In de-embryonated rice half-seeds, addition of gibberellin A3 (GA) greatly enhanced expression of the OsGLN2 gene, while the GA-induced gene expression was suppressed strongly by abscisic acid (ABA). This is the first report, to our knowledge, that OsGLN2 encodes a 1,3-beta-GLU and is expressed specifically in paleae and lemmas during flowering and in germinating seeds, where its expression is enhanced by GA and suppressed by ABA.


Assuntos
Glucana Endo-1,3-beta-D-Glucosidase/genética , Oryza/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Sequência Consenso , Primers do DNA , DNA de Plantas/genética , Flores/enzimologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Dados de Sequência Molecular , Oryza/genética , Oryza/crescimento & desenvolvimento , Sementes/enzimologia , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...