Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(38)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904268

RESUMO

Owing to the passive nature of liquid crystal (LC) materials, achieving luminous displays using pure LC materials is challenging. In addition, it is difficult to achieve a fast switching time using pristine ferroelectric LC devices without compromising their cell thickness. Herein, we have developed a fast switching and highly luminescent electro-optical device by dispersing a minute concentration of bimetallic nanoparticles (Au@Ag NPs) having a spherical gold core and a silver shell within a ferroelectric liquid crystal (FLC) host matrix, ZLI3654. Au@Ag core-shell NPs having synergic attributes of both counterparts were successfully synthesized by a facile seed-mediated route. The Au core helps to tune the shape of the Ag shell and provides enhanced electron density as well as improved stability against oxidation. Introducing nanoparticles induces little structural modifications to the host FLC, resulting in an improvement in the mesogenic alignment. Interestingly, ∼29-fold enhancement in the photoluminescence (PL) intensity is observed on dispersing 0.25 wt% of Au@Ag NPs into the FLC host matrix. The enhanced electromagnetic field in the FLC-nanocomposite is attributed to the Localized Surface Plasmon Resonance of Au@Ag NPs, which strengthens the photon absorption rates by the FLC molecules, culminating in the massive enrichment of the PL intensity. In addition, the improved localized electric field inside the FLC device led to a noticeable enhancement in the spontaneous polarization, dielectric permittivity, and, most interestingly, ∼53% fastening in the switching time at an optimum concentration (0.25 wt%) of Au@Ag NPs. The improved electro-optical parameters of the Au@Ag NPs/FLC composite have been compared with the performance of both pristine Au NPs/FLC and Ag NPs/FLC composites, respectively, for the comprehensiveness of the study. The present study paves a systematic way to develop FLC-based advanced electro-optical devices with faster switching and higher luminescence properties.

2.
Int J Biol Macromol ; 273(Pt 2): 133140, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878931

RESUMO

The emergence of sustainable polymers and technologies has led to the development of innovative materials with minimal carbon emissions which find extensive applications in wearable electronics, biomedical sensors, and Internet of Things (IoT)-based monitoring systems. Nanocellulose which can be generated from abundant biomass materials has been widely recognized as a sustainable alternative for a diverse range of applications due to its remarkable properties and eco-friendly nature. By making use of the unique and easily accessible coordination transformation property of Co(II) ions and associated visible light absorption changes, we report a novel Co(II) cation-incorporated nanocellulose/malonic acid hybrid aerogel material that exhibits reversible thermochromism induced by thermal stimulus in the presence of atmospheric moisture. This effect is accentuated by the highly porous nature of the nanocellulose aerogel material we have developed. Besides the reversible thermochromic property which Co(II) ions exhibit, the metal ions act as very efficient reinforcing units contributing significantly to the structural stability and rigidity of the hierarchical aerogels by coordinative cross-linking through carboxylate moieties present in the TEMPO-oxidized cellulose nanofibers (TCNF) and additionally adding malonic acid to provide sufficient COO- for cross-linking. Thorough characterization and detailed investigation of as-prepared hybrid aerogels was conducted to evaluate their overall properties including reversible thermochromism and moisture sensor behaviour. Further, an Android mobile-based application was developed to demonstrate the real-world application of the aerogels for atmospheric humidity sensing.


Assuntos
Celulose , Cobalto , Géis , Malonatos , Cobalto/química , Celulose/química , Géis/química , Malonatos/química , Temperatura , Nanofibras/química
3.
Food Chem ; 455: 139914, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38823124

RESUMO

Urea is also known as carbamide, an inexpensive and eco-friendly additive for starch functionalization. This article reviews the potential role of urea in starch modification, with the prominence of the mechanism of urea action, alterations in the starch structure and functional properties. In addition, current literature conveys the prospective effect of urea in fabricating starch films for food packaging, and the relevant areas that need to be covered in the forthcoming research are specified at the end of the article section. Urea can modify the diverse physico-chemical and functional properties of starch. Starch-based films exhibit pronounced effects on their mechanical and barrier properties upon the incorporation of urea, although this effect strongly depends on the urea content and degree of substitution (DS). Overall, urea holds great potential for use in the starch and bioplastic film industries, as it produces biocompatible derivatives with desirable performance.

4.
Chem Asian J ; 18(2): e202201035, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36519438

RESUMO

Gold nanoclusters (AuNCs) are an intensely pursued class of fluorophores with excellent biocompatibility, high water solubility, and ease of further conjugation. However, their low quantum yield limits their applications, such as ultra-sensitive chemical or molecular sensing. To address this problem, various strategies have been adopted for augmenting their fluorescence intensity. Herein, we report a facile and scalable approach for the fluorescence enhancement of bovine serum albumin (BSA) capped AuNCs (BSA-AuNCs) using periodic, close-packed polystyrene colloidal photonic crystals (CPCs). The slow photon effect at the bandgap edges is utilized for the increased light-matter interactions and thereby enhancing the fluorescence intensity of the BSA-AuNCs. Compared to the planar polystyrene control sample, the CPC film yielded a 14-fold enhancement in fluorescence intensity. Further, we demonstrated the as-prepared BSA-AuNCs-CPC as a solid-state platform for the highly sensitive and selective fluorescence turn-off detection of creatinine at nanomolar level.


Assuntos
Creatinina , Corantes Fluorescentes , Nanopartículas Metálicas , Creatinina/química , Fluorescência , Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , Poliestirenos , Soroalbumina Bovina/química , Espectrometria de Fluorescência
5.
Carbohydr Polym ; 292: 119723, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725192

RESUMO

A green strategy for the synthesis of bimetallic core-shell Au@Pd nanoflowers (NFs) employing banana pseudo-stem-derived TEMPO-oxidized cellulose nanocrystals (TCNC) as both capping and shape-directing agent via seed-mediated method is presented. Flower-like nanostructures of Au@Pd bound to TEMPO-oxidized cellulose nanocrystals (TCNC-Au@Pd) were decorated on amino-functionalized graphene (NH2-RGO) without losing their unique structure, allowing them to be deployed as an efficient, reusable and a green alternative heterogeneous catalyst. The decisive role of TCNC in the structural metamorphosis of nanoparticle morphology were inferred from the structural and morphology analyses. According to our study, the presence of -OH rich TCNC appears to play a pivotal role in the structured evolution of intricate nanostructure morphology. The feasibility of the bio-supported catalyst has been investigated in two concurrently prevalent model catalytic reactions, namely the oxygen reduction reaction (ORR) and the reduction of 4-nitrophenol, the best model reactions in fuel cell and industrial catalytic applications, respectively.


Assuntos
Celulose Oxidada , Nanopartículas , Catálise , Celulose , Ouro/química , Nanopartículas/química
6.
ACS Omega ; 6(39): 25842-25844, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632240

RESUMO

[This corrects the article DOI: 10.1021/acsomega.0c00410.].

7.
Anal Chim Acta ; 1181: 338893, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556227

RESUMO

Development of selective, ultra-sensitive, rapid and facile methods for the detection of chemical residues of toxic pesticides and hazardous chemicals are quite important in food safety, environmental monitoring and safeguarding public health. Herein, we presented a fluorescent turn-on aptasensor based on sulphur-doped graphene quantum dot (S-GQD) utilizing specific recognition and binding property of aptamer for the ultra-sensitive and selective detection of omethoate (OM) which is a systemic organophosphorus pesticide. The detection method is based on tuning aggregation-disaggregation mechanism of S-GQD by way of conformational alteration of the recognition probe. Fluorescence 'turn-on' process includes aggregation-induced quenching of S-GQD with aptamer via S-GQD-aptamer complex formation and its subsequent fluorescence recovery with the addition of OM by structural switching of S-GQD-aptamer complex to aptamer-omethoate complex. The reported 'switch-on' aptasensor has exhibited a low limit of detection of 0.001 ppm with high selectivity for OM over other pesticides.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Praguicidas , Pontos Quânticos , Dimetoato/análogos & derivados , Limite de Detecção , Compostos Organofosforados , Enxofre
8.
Metallomics ; 13(8)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34351413

RESUMO

Active surfaces with bactericidal properties are of paramount importance in health care sector as a judicious approach to confront prevalent challenges presented by disastrous pathogenic infections and antibiotic-resistant microbes. Herein, we present Bayerite underpinned Ag2O/Ag (ALD), a nanohybrid with excellent antibacterial and antibiofilm functionalities against tested standard strains and clinical isolates. The multicomponent system coexists and complement each other with respect to phase and functionalities, demonstrated by XRD, XPS, and TEM analyses. In situ reduction of Ag+ ions to Ag0 over Bayerite as a stable bound phase is favoured by pH of the reaction, yielding 60-80% bound Ag protruding outwards facilitating active surface for interaction with microbes. ALD has a minimum inhibitory concentration (MIC) of 0.068 mg/ml against clinical isolates: Pseudomonas aeruginosa RRLP1, RRLP2, Acinetobactor baumannii C78 and C80. Disc diffusion assay demonstrated excellent antibacterial activity against standard strains (positive control: standard antibiotic disc, Amikacin). ALD incorporated PMMA films (5 and 10 wt%; PALD-5 and PALD-10) exhibited significant contact killing (99.9%) of clinical isolates in drop-test besides strong antibacterial activity (disc diffusion assay) comparable to that of ALD. ALD exemplified a dose (0.034 and 0.017 mg/ml) dependent biofilm inhibition (P < 0.001) and significant eradication of pre-formed biofilms (P < 0.001) by clinical isolates. PALD 5 and PALD 10 significantly declined the number of viable biofilm associated bacteria (99.9%) compared to control. Both ALD and PALD samples are proposed as green antibacterial materials with antibiofilm properties. Results also present ample opportunity to explore PALD as antibacterial and/or antibiofilm coating formulations.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Óxidos/farmacologia , Compostos de Prata/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana
9.
ACS Appl Bio Mater ; 4(5): 4373-4383, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006849

RESUMO

The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC-water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m-2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m-2 h-1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.


Assuntos
Acetobacteraceae/química , Materiais Biocompatíveis/química , Celulose/química , Nanopartículas/química , Luz Solar , Titânio/química , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Tamanho da Partícula , Purificação da Água
10.
ACS Omega ; 5(21): 12136-12143, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548393

RESUMO

Direct visualization of soft organic molecules like cellulose is extremely challenging under a high-energy electron beam. Herein, we adopt two ionization damage extenuation strategies to visualize the lattice arrangements of the ß-(1→4)-d-glucan chains in carboxylated nanocellulose fibers (C-NCFs) having cellulose II crystalline phase using high-resolution transmission electron microscopy. Direct imaging of individual nanocellulose fibrils with high-resolution and least damage under high-energy electron beam is achieved by employing reduced graphene oxide, a conducting material with high electron transmittance and Ag+ ions, with high electron density, eliminating the use of sample-specific, toxic staining agents, or other advanced add-on techniques. Furthermore, the imaging of cellulose lattices in a C-NCF/TiO2 nanohybrid system is accomplished in the presence of Ag+ ions in a medium revealing the mode of association of C-NCFs in the system, which validates the feasibility of the presented strategy. The methods adopted here can provide further understanding of the fine structures of carboxylated nanocellulose fibrils for studying their structure-property relationship for various applications.

11.
J Environ Manage ; 247: 57-66, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229786

RESUMO

Three material engineering strategies in the form of doping (Boron-doping), nanostructuring (nanosheet (NS) formation) and decorating with plasmonic nanoparticles (loading with Ag metal), were integrated to improve the photocatalytic activity of graphitic carbon nitride (gC3N4). Concentrations of B-doping and Ag-loading were optimized to maximize the catalytic performance in the final nanocomposite of Ag-loaded B-doped gC3N4 NS. Combined effect of all three strategies successfully produced over 5 times higher rate towards degradation of organic dye pollutant, when compared to unmodified bulk gC3N4. Detailed characterization results revealed that incorporation of B in gC3N4 matrix reduces the band gap to increase the visible light absorption, while specific surface area is significantly enhanced upon formation of NS. Decoration of Ag nanoparticles (NPs) on B-doped gC3N4 NS assists in fast transfer of photogenerated electrons from gC3N4 to Ag NPs owing to the interfacial electric field across the junctions and thus reduces the recombination process. Investigations on individual strategies revealed that decoration of Ag NPs to induce better charge separation, is the most effective route for enhancing the photocatalytic activity.


Assuntos
Grafite , Nanopartículas Metálicas , Catálise , Luz , Prata
12.
Phys Chem Chem Phys ; 19(37): 25564-25573, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28902206

RESUMO

The CO2 adsorption properties of an organic macrocycle, cucurbit[6]uril (CB[6]), have been evaluated through experimental and theoretical studies. Quantum mechanical calculations show that CB[6] is capable of adsorbing the CO2 molecule selectively within its cavity relative to nitrogen. Adsorption experiments at 298 K and at 1 bar pressure gave a CO2 adsorption value of 1.23 mmol g-1 for the unmodified material. Significant enhancements in the CO2 adsorption capacity of the material were experimentally demonstrated through surface modification using physical and chemical methods. Ethanolamine (EA) modified CB[6] provided an excellent sorption selectivity value of 121.4 for CO2/N2 at 323 K and is unique with respect to its discrimination potential between CO2 and N2. The chemical nature of the interaction between CO2 and amine is shown to be the primary mechanism for the enhanced CO2 absorption performance.

13.
ACS Omega ; 2(11): 8051-8061, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023571

RESUMO

Graphene quantum dots (GQDs) are zero-dimensional materials that exhibit characteristics of both graphene and quantum dots. Herein, we report a rapid, relatively green, one-pot synthesis of size-tunable GQDs from graphene oxide (GO) by a sonochemical method with intermittent microwave heating, keeping the reaction temperature constant at 90 °C. The GQDs were synthesized by oxidative cutting of GO using KMnO4 as an oxidizing agent within a short span of time (30 min) in an acid-free condition. The synthesized GQDs were of high quality and exhibited good quantum yield (23.8%), high product yield (>75%), and lower cytotoxicity (tested up to 1000 µg/mL). Furthermore, the as-synthesized GQDs were demonstrated as excellent fluorescent probes for bioimaging and label-free sensing of Fe(III) ions, with a detection limit as low as 10 × 10-6 M.

14.
ACS Appl Mater Interfaces ; 8(43): 29242-29251, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27709880

RESUMO

The synthesis of shape-tuned silver (Ag) nanostructures with high plasmon characteristics has become of significant importance in in vitro diagnostic applications. Herein, we report a simple aqueous synthetic route using 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized nanocellulose fibers (T-NCFs) and trisodium citrate (TSC) that results in anisotropically grown flower-like Ag nanoconstructs (AgNFs). A detailed investigation of the concentration and sequence of the addition of reactants in the formation of these anisotropic Ag structures is presented. Our experimental results show that the mechanism underlying the formation of AgNFs is facilitated by the synergistic action of T-NCFs and TSC on the directional growth of Ag nuclei during the primary stage, which later develop into a flower-like structure by the ripening of larger particles consuming smaller Ag particles. As a result the final structure comprises flower-like morphology over which several smaller Ag particles (of size <10 nm) are adhered. The aqueous AgNF colloid exhibits high stability (ζ = -69.4 mV) and long shelf-life at neutral pH (>4 months) by the efficient capping action of T-NCFs. Further, an as-synthesized nanoconstructs shows excellent surface-enhanced Raman scattering activity, which enables ultrasensitive detection of p-aminothiophenol with a concentration down to 10 aM (10-17 M) in a reproducible way. This biosupported synthesis of stable aqueous colloids of AgNF may find potential applications as a biomedical sensing platform for the trace level detection of analyte molecules.


Assuntos
Nanoestruturas , Celulose , Óxidos N-Cíclicos , Oxirredução , Prata , Análise Espectral Raman , Água
15.
Data Brief ; 7: 1314-20, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27158642

RESUMO

This data file contains the detailed synthetic procedure for the synthesis of two new cyanopyridine based conjugated polymer P1 and P2 along with the synthesis of its monomers. The synthesised polymers can be used for electroluminescence and photovoltaic (PV) application. The physical data of the polymers are provided in this data file along with the morphological data of the polymer thin films. The data provided here are in association with the research article entitled 'Cyanopyridine based conjugated polymer-synthesis and characterisation' (Hemavathi et al., 2015) [3].

16.
Nanoscale ; 5(11): 4816-22, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23613010

RESUMO

The aggregation of amyloid peptides into ordered fibrils is closely associated with many neurodegenerative diseases. The surfaces of cell membranes and biomolecules are believed to play important roles in modulation of peptide aggregation under physiological conditions. Experimental studies of fibrillogenesis at the molecular level in vivo, however, are inherently challenging, and the molecular mechanisms of how surface affects the structure and ordering of amyloid fibrils still remain elusive. Herein we have investigated the aggregation behavior of insulin peptides within water films adsorbed on the mica surface. AFM measurements revealed that the structure and orientation of fibrils were significantly affected by the mica lattice and the peptide concentration. At low peptide concentration (~0.05 mg mL(-1)), there appeared a single layer of short and well oriented fibrils with a mean height of 1.6 nm. With an increase of concentration to a range of 0.2-2.0 mg mL(-1), a different type of fibrils with a mean height of 3.8 nm was present. Interestingly, when the concentration was above 2.0 mg mL(-1), the thicker fibrils exhibited two-dimensional liquid-crystal-like ordering probably caused by the combination of entropic and electrostatic forces. These results could help us gain better insight into the effects of the substrate on amyloid fibrillation.


Assuntos
Silicatos de Alumínio/química , Amiloide/química , Amiloide/metabolismo , Humanos , Insulina/química , Insulina/metabolismo , Microscopia de Força Atômica , Eletricidade Estática , Propriedades de Superfície
17.
Dalton Trans ; 42(13): 4602-12, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23358559

RESUMO

A novel nanocomposite coating containing titania, silica and lanthanum phosphate prepared through an all aqueous sol-gel route exhibits excellent self-cleaning ability arising from the synergistic effect of the constituents in the nanocomposite. A highly stable titania-silica-lanthanum phosphate nanocomposite sol having particle size in the range of 30-50 nm has been synthesized starting from a titanyl sulphate precursor, which was further used for the development of photocatalytically active composite coatings on glass. The coatings prepared by the dip coating technique as well as the nanocomposite powders are heat treated and characterized further for their morphology and multifunctionality. The nanocomposite containing 1.5 wt% LaPO4 has shown a surface area as high as 138 m(2) g(-1) and a methylene blue degradation efficiency of 94% in two hours of UV exposure. The composite coating has shown very good homogeneity evidenced by transparency as high as 99.5% and low wetting behaviour. The present novel approach for energy conserving, aqueous derived, self-cleaning coatings may be suitable for large scale industrial applications.

18.
Nanoscale ; 3(8): 3049-51, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21727967

RESUMO

The process of glucagon peptide aggregation was studied with high resolution atomic force microscopy (AFM). The statistical analysis of ex situ AFM images in combination with in situ AFM observation suggests that it is more likely that (proto)fibrils are formed via direct longitudinal growth of oligomers, instead of the lateral association of two or more filaments.


Assuntos
Amiloide/metabolismo , Glucagon/metabolismo , Nanoestruturas/ultraestrutura , Amiloide/química , Fenômenos Bioquímicos , Glucagon/química , Microscopia de Força Atômica , Nanoestruturas/química , Polimerização
19.
ACS Nano ; 5(5): 3542-51, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21495685

RESUMO

We demonstrate the use of binary colloidal assemblies as lithographic masks to generate tunable Au patterns on SiO(2) substrates with dimensions ranging from micrometers to nanometers. Such patterns can be modified with different chemistries to create patterns with well-defined sites for selective adsorption of proteins, where the pattern size and spacing is adjustable depending on particle choice. In our system, the binary colloidal assemblies contain large and small particles of similar or different material and are self-assembled from dilute dispersions with particle size ratios ranging from 0.10 to 0.50. This allows masks with variable morphology and thus production of chemical patterns of tunable geometry. Finally, the Au or SiO(2) regions of the pattern are surface modified with protein resistant oligoethyleneglycol self-assembled molecules, which facilitates site selective adsorption of proteins into the unmodified regions of the pattern. This we show with fluorescently labeled bovine serum albumin.


Assuntos
Cristalização/métodos , Ouro/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Proteínas/química , Adsorção , Coloides/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...