Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(21): 26120-26127, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259284

RESUMO

Understanding the deformation of energy storage electrodes at a local scale and its correlation to electrochemical performance is crucial for designing effective electrode architectures. In this work, the effect of electrolyte cation and electrode morphology on birnessite (δ-MnO2) deformation during charge storage in aqueous electrolytes was investigated using a mechanical cyclic voltammetry approach via operando atomic force microscopy (AFM) and molecular dynamics (MD) simulation. In both K2SO4 and Li2SO4 electrolytes, the δ-MnO2 host electrode underwent expansion during cation intercalation, but with different potential dependencies. When intercalating Li+, the δ-MnO2 electrode presents a nonlinear correlation between electrode deformation and electrode height, which is morphologically dependent. These results suggest that the stronger cation-birnessite interaction is the reason for higher local stress heterogeneity when cycling in Li2SO4 electrolyte, which might be the origin of the pronounced electrode degradation in this electrolyte.

2.
J Phys Chem B ; 126(11): 2265-2278, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35139641

RESUMO

Using a series of time- and temperature-resolved synchrotron diffraction experiments, the relationship between multiple polymorphs of ZnCl2 and its respective hydrates is established. The δ-phase is found to be the pure anhydrous phase, while the α, ß, and γ phases result from partial hydration. Diffraction, gravimetric, and calorimetric measurements across the entire ZnCl2·R H2O, 0 > R > ∞ composition range using ultrapure, doubly sublimed ZnCl2 establish the ZnCl2 : H2O phase diagram. The results are consistent with the existence of crystalline hydrates at R = 1.33, 3, and 4.5 and identify a mechanistic pathway for hydration. All water is not removed from hydrated ZnCl2 until the system is heated above its melting point. While hydration/dehydration is reversible in concentrated solutions, dehydration from dilute aqueous solutions can result in loss of HCl, the source of hydroxide impurities commonly found in commercial ZnCl2 preparations. The strong interaction between ZnCl2 and water exerts a significant impact on the solvent water such that the system exhibits a deep eutectic at a composition of about R = 7 (87.5 mol %) and a eutectic temperature below -60 °C.


Assuntos
Desidratação , Água , Cloretos , Humanos , Cloreto de Sódio , Água/química , Difração de Raios X , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...