Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345344

RESUMO

The 2'-O-methylation (2'-O-Me) of ribosomal RNA (rRNA) shows plasticity that is potentially associated with cell phenotypes. We used RiboMeth-seq profiling to reveal growth arrest-specific 2'-O-Me patterns in primary human dermal fibroblasts from three different donors. We exposed cells to hydrogen peroxide to induce cellular senescence and to high cell densities to promote quiescence by contact inhibition. We compared both modes of cell cycle arrest to proliferating cells and could indeed distinguish these conditions by their overall 2'-O-Me patterns. Methylation levels at a small fraction of sites showed plasticity and correlated with the expression of specific small nucleolar RNAs (snoRNAs) but not with expression of fibrillarin. Moreover, we observed subtle senescence-associated alterations in ribosome biogenesis. Knockdown of the snoRNA SNORD87, which acts as a guide for modification of a hypermethylated position in non-proliferating cells, was sufficient to boost cell proliferation. Conversely, depletion of SNORD88A, SNORD88B and SNORD88C, which act as guides for modification of a hypomethylated site, caused decreased proliferation without affecting global protein synthesis or apoptosis. Taken together, our findings provide evidence that rRNA modifications can be used to distinguish and potentially influence specific growth phenotypes of primary cells.


Assuntos
RNA Ribossômico , Ribose , Humanos , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribose/metabolismo , Ribossomos/metabolismo , Metilação , RNA Nucleolar Pequeno/genética , Fibroblastos/metabolismo
2.
Mech Ageing Dev ; 200: 111588, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678388

RESUMO

The research of the last two decades has defined a crucial role of cellular senescence in both the physiology and pathology of skin, and senescent cells have been detected in conditions including development, regeneration, aging, and disease. The pathophysiology of cellular senescence in skin is complex as the phenotype of senescence pertains to several different cell types including fibroblasts, keratinocytes and melanocytes, among others. Paradoxically, the transient presence of senescent cells is believed to be beneficial in the context of development and wound healing, while the chronic presence of senescent cells is detrimental in the context of aging, diseases, and chronic wounds, which afflict predominantly the elderly. Identifying strategies to prevent senescence induction or reduce senescent burden in the skin could broadly benefit the aging population. Senolytics, drugs known to specifically eliminate senescent cells while preserving non-senescent cells, are being intensively studied for use in the clinical setting. Here, we review recent research on skin senescence, on the methods for the detection of senescent cells and describe promises and challenges related to the application of senolytic drugs. This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.


Assuntos
Envelhecimento , Desenvolvimento de Medicamentos/métodos , Senoterapia/farmacologia , Envelhecimento da Pele , Envelhecimento/patologia , Envelhecimento/fisiologia , Humanos , Regeneração/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/patologia , Envelhecimento da Pele/fisiologia
3.
Mech Ageing Dev ; 198: 111527, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174292

RESUMO

Lipid-based signalling modulates several cellular processes and intercellular communication during wound healing and tissue regeneration. Bioactive lipids include but are not limited to the diverse group of eicosanoids, phospholipids, and extracellular vesicles and mediate the attraction of immune cells, initiation of inflammatory responses, and their resolution. In aged individuals, wound healing and tissue regeneration are greatly impaired, resulting in a delayed healing process and non-healing wounds. Senescent cells accumulate with age in vivo, preferably at sites implicated in age-associated pathologies and their elimination was shown to alleviate many age-associated diseases and disorders. In contrast to these findings, the transient presence of senescent cells in the process of wound healing exerts beneficial effects and limits fibrosis. Hence, clearance of senescent cells during wound healing was repeatedly shown to delay wound closure in vivo. Recent findings established a dysregulated synthesis of eicosanoids, phospholipids and extracellular vesicles as part of the senescent phenotype. This intriguing connection between cellular senescence, lipid-based signalling, and the process of wound healing and tissue regeneration prompts us to compile the current knowledge in this review and propose future directions for investigation.


Assuntos
Envelhecimento/metabolismo , Senescência Celular , Metabolismo dos Lipídeos , Senoterapia/farmacologia , Cicatrização , Comunicação Celular/fisiologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Humanos , Transdução de Sinais/fisiologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
4.
J Invest Dermatol ; 141(4S): 993-1006.e15, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33333126

RESUMO

During aging, skin accumulates senescent cells. The transient presence of senescent cells, followed by their clearance by the immune system, is important in tissue repair and homeostasis. The persistence of senescent cells that evade clearance contributes to the age-related deterioration of the skin. The senescence-associated secretory phenotype of these cells contains immunomodulatory molecules that facilitate clearance but also promote chronic damage. Here, we investigated the epilipidome-the oxidative modifications of phospholipids-of senescent dermal fibroblasts, because these molecules are among the bioactive lipids that were recently identified as senescence-associated secretory phenotype factors. Using replicative- and stress- induced senescence protocols, we identified lysophosphatidylcholines as universally elevated in senescent fibroblasts, whereas other oxidized lipids displayed a pattern that was characteristic for the used senescence protocol. When we tested the lysophosphatidylcholines for senescence-associated secretory phenotype activity, we found that they elicit chemokine release in nonsenescent fibroblasts but also interfere with toll-like receptor 2 and 6/CD36 signaling and phagocytic capacity in macrophages. Using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging, we localized two lysophosphatidylcholine species in aged skin. This suggests that lysophospholipids may facilitate immune evasion and low-grade chronic inflammation in skin aging.


Assuntos
Senescência Celular/imunologia , Derme/patologia , Fibroblastos/patologia , Lisofosfatidilcolinas/metabolismo , Envelhecimento da Pele/imunologia , Idoso , Células Cultivadas , Quimiocinas/metabolismo , Derme/citologia , Derme/imunologia , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Pessoa de Meia-Idade , Oxirredução , Fagocitose/imunologia , Cultura Primária de Células
5.
J Invest Dermatol ; 139(12): 2425-2436.e5, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31220456

RESUMO

Extracellular vesicles (EVs) and their miRNA cargo are intercellular communicators transmitting their pleiotropic messages between different cell types, tissues, and body fluids. Recently, they have been reported to contribute to skin homeostasis and were identified as members of the senescence-associated secretory phenotype of human dermal fibroblasts. However, the role of EV-miRNAs in paracrine signaling during skin aging is yet unclear. Here we provide evidence for the existence of small EVs in the human skin and dermal interstitial fluid using dermal open flow microperfusion and show that EVs and miRNAs are transferred from dermal fibroblasts to epidermal keratinocytes in 2D cell culture and in human skin equivalents. We further show that the transient presence of senescent fibroblast derived small EVs accelerates scratch closure of epidermal keratinocytes, whereas long-term incubation impairs keratinocyte differentiation in vitro. Finally, we identify vesicular miR-23a-3p, highly secreted by senescent fibroblasts, as one contributor of the EV-mediated effect on keratinocytes in in vitro wound healing assays. To summarize, our findings support the current view that EVs and their miRNA cargo are members of the senescence-associated secretory phenotype and, thus, regulators of human skin homeostasis during aging.


Assuntos
Vesículas Extracelulares/metabolismo , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Envelhecimento da Pele/genética , Western Blotting , Comunicação Celular/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Vesículas Extracelulares/ultraestrutura , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Queratinócitos/ultraestrutura , Microscopia Eletrônica de Transmissão
6.
Aging (Albany NY) ; 10(5): 1103-1132, 2018 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-29779019

RESUMO

Loss of functionality during aging of cells and organisms is caused and accompanied by altered cell-to-cell communication and signalling. One factor thereby is the chronic accumulation of senescent cells and the concomitant senescence-associated secretory phenotype (SASP) that contributes to microenvironment remodelling and a pro-inflammatory status. While protein based SASP factors have been well characterized, little is known about small extracellular vesicles (sEVs) and their miRNA cargo. Therefore, we analysed secretion of sEVs from senescent human dermal fibroblasts and catalogued the therein contained miRNAs. We observed a four-fold increase of sEVs, with a concomitant increase of >80% of all cargo miRNAs. The most abundantly secreted miRNAs were predicted to collectively target mRNAs of pro-apoptotic proteins, and indeed, senescent cell derived sEVs exerted anti-apoptotic activity. In addition, we identified senescence-specific differences in miRNA composition of sEVs, with an increase of miR-23a-5p and miR-137 and a decrease of miR-625-3p, miR-766-3p, miR-199b-5p, miR-381-3p, miR-17-3p. By correlating intracellular and sEV-miRNAs, we identified miRNAs selectively retained in senescent cells (miR-21-3p and miR-17-3p) or packaged specifically into senescent cell derived sEVs (miR-15b-5p and miR-30a-3p). Therefore, we suggest sEVs and their miRNA cargo to be novel, members of the SASP that are selectively secreted or retained in cellular senescence.


Assuntos
Apoptose/fisiologia , Senescência Celular/fisiologia , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA