Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 113(23): 5783-92, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19171877

RESUMO

The Lmo2 gene encodes a transcriptional cofactor critical for the development of hematopoietic stem cells. Ectopic LMO2 expression causes leukemia in T-cell acute lymphoblastic leukemia (T-ALL) patients and severe combined immunodeficiency patients undergoing retroviral gene therapy. Tightly controlled Lmo2 expression is therefore essential, yet no comprehensive analysis of Lmo2 regulation has been published so far. By comparative genomics, we identified 17 highly conserved noncoding elements, 9 of which revealed specific acetylation marks in chromatin-immunoprecipitation and microarray (ChIP-chip) assays performed across 250 kb of the Lmo2 locus in 11 cell types covering different stages of hematopoietic differentiation. All candidate regulatory regions were tested in transgenic mice. An extended LMO2 proximal promoter fragment displayed strong endothelial activity, while the distal promoter showed weak forebrain activity. Eight of the 15 distal candidate elements functioned as enhancers, which together recapitulated the full expression pattern of Lmo2, directing expression to endothelium, hematopoietic cells, tail, and forebrain. Interestingly, distinct combinations of specific distal regulatory elements were required to extend endothelial activity of the LMO2 promoter to yolk sac or fetal liver hematopoietic cells. Finally, Sfpi1/Pu.1, Fli1, Gata2, Tal1/Scl, and Lmo2 were shown to bind to and transactivate Lmo2 hematopoietic enhancers, thus identifying key upstream regulators and positioning Lmo2 within hematopoietic regulatory networks.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição GATA/metabolismo , Leucemia/metabolismo , Metaloproteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Telomerase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Proteínas com Domínio LIM , Leucemia/genética , Metaloproteínas/genética , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Telomerase/genética , Análise Serial de Tecidos , Transativadores/genética
2.
Proc Natl Acad Sci U S A ; 104(3): 840-5, 2007 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-17213321

RESUMO

Hematopoietic stem cell (HSC) development is regulated by several signaling pathways and a number of key transcription factors, which include Scl/Tal1, Runx1, and members of the Smad family. However, it remains unclear how these various determinants interact. Using a genome-wide computational screen based on the well characterized Scl +19 HSC enhancer, we have identified a related Smad6 enhancer that also targets expression to blood and endothelial cells in transgenic mice. Smad6, Bmp4, and Runx1 transcripts are concentrated along the ventral aspect of the E10.5 dorsal aorta in the aorta-gonad-mesonephros region from which HSCs originate. Moreover, Smad6, an inhibitor of Bmp4 signaling, binds and inhibits Runx1 activity, whereas Smad1, a positive mediator of Bmp4 signaling, transactivates the Runx1 promoter. Taken together, our results integrate three key determinants of HSC development; the Scl transcriptional network, Runx1 activity, and the Bmp4/Smad signaling pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Animais , Sequência de Bases , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Biologia Computacional , Sequência Conservada , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Família Multigênica , Células NIH 3T3 , Ligação Proteica , Elementos Reguladores de Transcrição/genética , Alinhamento de Sequência , Proteína Smad6/química , Proteína Smad6/genética , Proteína Smad6/metabolismo
3.
Blood ; 109(5): 1908-16, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17053063

RESUMO

Transcription factors are key regulators of hematopoietic stem cells (HSCs), yet the molecular mechanisms that control their expression are largely unknown. Previously, we demonstrated that expression of Scl/Tal1, a transcription factor required for the specification of HSCs, is controlled by Ets and GATA factors. Here we characterize the molecular mechanisms controlling expression of Lyl1, a paralog of Scl also required for HSC function. Two closely spaced promoters directed expression to hematopoietic progenitor, megakaryocytic, and endothelial cells in transgenic mice. Conserved binding sites required for promoter activity were bound in vivo by GATA-2 and the Ets factors Fli1, Elf1, Erg, and PU.1. However, despite coregulation of Scl and Lyl1 by the same Ets and GATA factors, Scl expression was initiated prior to Lyl1 in embryonic stem (ES) cell differentiation assays. Moreover, ectopic expression of Scl but not Lyl1 rescued hematopoietic differentiation in Scl-/- ES cells, thus providing a molecular explanation for the vastly different phenotypes of Scl-/- and Lyl1-/- mouse embryos. Furthermore, coregulation of Scl and Lyl1 later during development may explain the mild phenotype of Scl-/- adult HSCs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Transcrição GATA2/metabolismo , Hematopoese , Proteínas de Neoplasias/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Sequência Conservada , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Alinhamento de Sequência , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Tempo
4.
Genomics ; 86(4): 489-94, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16081246

RESUMO

L3mbtl encodes a member of the Polycomb group of proteins, which function as transcriptional repressors in large protein complexes. The Drosophila D-l(3)mbt protein is considered a tumor suppressor since its inactivation results in brain tumors. The human L3MBTL gene lies in a region of chromosome 20 frequently deleted in patients with myeloid malignancies and has been proposed as a candidate 20q tumor suppressor gene. Recently we have shown that L3MBTL undergoes monoallelic methylation in hematopoietic tissues and is transcribed from the paternally derived allele. The mouse L3mbtl gene is located on chromosome 2, a region of syntenic homology with human chromosome 20, and in a region containing a number of genes subject to epigenetic regulation. Here we analyze the genomic structure and alternative splicing of L3mbtl and assess its imprinting status in mouse. L3mbtl displays a complex pattern of alternative splicing involving both 5' noncoding and coding exons and is transcribed from two promoters. Unlike its human counterpart, L3mbtl escapes imprinting and there is no differential methylation of its CpG island.


Assuntos
Processamento Alternativo/genética , Genes Supressores de Tumor , Impressão Genômica/genética , Camundongos/genética , Proteínas de Neoplasias/genética , Animais , Sequência de Bases , Proteínas Cromossômicas não Histona , Ilhas de CpG , Metilação de DNA , Éxons , Humanos , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras , Especificidade da Espécie , Proteínas Supressoras de Tumor
5.
Stem Cells ; 23(9): 1378-88, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16051983

RESUMO

Appropriate transcriptional regulation is critical for the biological functions of many key regulatory genes, including the stem cell leukemia (SCL) gene. As part of a systematic dissection of SCL transcriptional regulation, we have previously identified a 5,245-bp SCL +18/19 enhancer that targeted embryonic endothelium together with embryonic and adult hematopoietic progenitors and stem cells (HSCs). This enhancer is proving to be a powerful tool for manipulating hematopoietic progenitors and stem cells, but the design and interpretation of such transgenic studies require a detailed understanding of enhancer activity in vivo. In this study, we demonstrate that the +18/19 enhancer is active in mast cells, megakaryocytes, and adult endothelium. A 644-bp +19 core enhancer exhibited similar temporal and spatial activity to the 5,245-bp +18/19 fragment both during development and in adult mice. Unlike the +18/19 enhancer, the +19 core enhancer was only active in adult mice when linked to the eukaryotic reporter gene human placental alkaline phosphatase. Activity of a single core enhancer in HSCs, endothelium, mast cells, and megakaryocytes suggests possible overlaps in their respective transcriptional programs. Moreover, activity in a proportion of thymocytes and other SCL-negative cell types suggests the existence of a silencer elsewhere in the SCL locus.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Elementos Facilitadores Genéticos/genética , Células-Tronco Hematopoéticas/citologia , Proteínas Proto-Oncogênicas/genética , Animais , Células da Medula Óssea/citologia , Linhagem da Célula , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Enzimológica da Expressão Gênica/genética , Masculino , Mastócitos/citologia , Mastócitos/enzimologia , Megacariócitos/citologia , Megacariócitos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Proteína 1 de Leucemia Linfocítica Aguda de Células T , beta-Galactosidase/biossíntese , beta-Galactosidase/sangue , beta-Galactosidase/genética
6.
Hum Mol Genet ; 14(5): 595-601, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15649946

RESUMO

The development of blood has long served as a model for mammalian cell type specification and differentiation, and yet the underlying transcriptional networks remain ill defined. Characterization of such networks will require genome-wide identification of cis-regulatory sequences and an understanding of how regulatory information is encoded in the primary DNA sequence. Despite progress in lower organisms, genome-wide computational identification of mammalian cis-regulatory sequences has been hindered by increased genomic complexity and cumbersome transgenic assays. Starting with a well-characterized blood stem cell enhancer from the SCL gene, we have developed computational tools for the identification of functionally related gene regulatory sequences. Two candidate enhancers discovered in this way were located in intron 1 of the Fli-1 and PRH/Hex genes, both transcription factors previously implicated in controlling blood and endothelial development. Subsequent transgenic and biochemical analysis demonstrated that the two computationally identified enhancers are functionally related to the SCL stem cell enhancer. The approach developed here may therefore be useful for identifying additional enhancers involved in the control of early blood and endothelial development, and may be adapted to decipher transcriptional regulatory codes controlling a broad range of mammalian developmental programmes.


Assuntos
Diferenciação Celular/genética , Endotélio/fisiologia , Elementos Facilitadores Genéticos , Células-Tronco Hematopoéticas/fisiologia , Antígenos CD34/genética , Antígenos CD34/metabolismo , Sequência de Bases , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endotélio/citologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Dados de Sequência Molecular , Proteína Proto-Oncogênica c-fli-1 , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Software , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Mol Cell Biol ; 24(5): 1870-83, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14966269

RESUMO

Analysis of cis-regulatory elements is central to understanding the genomic program for development. The scl/tal-1 transcription factor is essential for lineage commitment to blood cell formation and previous studies identified an scl enhancer (the +18/19 element) which was sufficient to target the vast majority of hematopoietic stem cells, together with hematopoietic progenitors and endothelium. Moreover, expression of scl under control of the +18/19 enhancer rescued blood progenitor formation in scl(-/-) embryos. However, here we demonstrate by using a knockout approach that, within the endogenous scl locus, the +18/19 enhancer is not necessary for the initiation of scl transcription or for the formation of hematopoietic cells. These results led to the identification of a bifunctional 5' enhancer (-3.8 element), which targets expression to hematopoietic progenitors and endothelium, contains conserved critical Ets sites, and is bound by Ets family transcription factors, including Fli-1 and Elf-1. These data demonstrate that two geographically distinct but functionally related enhancers regulate scl transcription in hematopoietic progenitors and endothelial cells and suggest that enhancers with dual hematopoietic-endothelial activity may represent a general strategy for regulating blood and endothelial development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Proteínas Nucleares , Proteína Proto-Oncogênica c-fli-1 , Proteínas Proto-Oncogênicas/genética , Alinhamento de Sequência , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transativadores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
8.
EMBO J ; 21(12): 3039-50, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12065417

RESUMO

Stem cells are a central feature of metazoan biology. Haematopoietic stem cells (HSCs) represent the best-characterized example of this phenomenon, but the molecular mechanisms responsible for their formation remain obscure. The stem cell leukaemia (SCL) gene encodes a basic helix-loop-helix (bHLH) transcription factor with an essential role in specifying HSCs. Here we have addressed the transcriptional hierarchy responsible for HSC formation by characterizing an SCL 3' enhancer that targets expression to HSCs and endothelium and their bipotential precursors, the haemangioblast. We have identified three critical motifs, which are essential for enhancer function and bind GATA-2, Fli-1 and Elf-1 in vivo. Our results suggest that these transcription factors are key components of an enhanceosome responsible for activating SCL transcription and establishing the transcriptional programme required for HSC formation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Células-Tronco Hematopoéticas/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Xenopus , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Embrião de Mamíferos/fisiologia , Embrião não Mamífero , Fator de Transcrição GATA2 , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Sequências Hélice-Alça-Hélice/genética , Humanos , Substâncias Macromoleculares , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Complexos Multiproteicos , Ligação Proteica , Proteína Proto-Oncogênica c-fli-1 , Proteínas Proto-Oncogênicas/metabolismo , Alinhamento de Sequência , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transativadores/metabolismo , Xenopus laevis/fisiologia
9.
Blood ; 99(11): 3931-8, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12010791

RESUMO

The stem cell leukemia (SCL) gene encodes a basic helix-loop-helix transcription factor with a critical role in the development of both blood and endothelium. Loss-of-function studies have shown that SCL is essential for the formation of hematopoietic stem cells, for subsequent erythroid development and for yolk sac angiogenesis. SCL exhibits a highly conserved pattern of expression from mammals to teleost fish. Several murine SCL enhancers have been identified, each of which directs reporter gene expression in vivo to a subdomain of the normal SCL expression pattern. However, regulatory elements necessary for SCL expression in erythroid cells remain to be identified and the size of the chromosomal domain needed to support appropriate SCL transcription is unknown. Here we demonstrate that a 130-kilobase (kb) yeast artificial chromosome (YAC) containing the human SCL locus completely rescued the embryonic lethal phenotype of scl(-/-) mice. Rescued YAC(+) scl(-/-) mice were born in appropriate Mendelian ratios, were healthy and fertile, and exhibited no detectable abnormality of yolk sac, fetal liver, or adult hematopoiesis. The human SCL protein can therefore substitute for its murine homologue. In addition, our results demonstrate that the human SCL YAC contains the chromosomal domain necessary to direct expression to the erythroid lineage and to all other tissues in which SCL performs a nonredundant essential function.


Assuntos
Proteínas de Ligação a DNA/genética , Deleção de Genes , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cromossomos Artificiais de Levedura , Ensaio de Unidades Formadoras de Colônias , Proteínas de Ligação a DNA/deficiência , Citometria de Fluxo , Regulação da Expressão Gênica , Genes Letais , Sequências Hélice-Alça-Hélice/genética , Humanos , Leucemia/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Proteínas Proto-Oncogênicas/deficiência , Mapeamento por Restrição , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Transcrição/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA