Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38801455

RESUMO

Gamma-terpinene (γ-TPN) is a cyclohexane monoterpene isolated from plant essential oils, such as tea tree (Melaleuca alternifolia), oregano (Origanum vulgare), rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris Marchand), and eucalyptus (Eucalyptus sp.). Terpenes are widely studied molecules pharmacologically active on the cardiovascular system, hemostasis, and antioxidant actions. Herein, it was investigated the cytotoxic and antiplatelet activity of γ-TPN using different non-clinical laboratory models. For in silico evaluation, the PreADMET, SwissADME, and SwissTargetPrediction softwares were used. Molecular docking was performed using the AutoDockVina and BIOVIA Discovery Studio databases. The cytotoxicity of γ-TPN was analyzed by the MTT assay upon normal murine endothelial SVEC4-10 and fibroblast L-929 cells. Platelet aggregation was evaluated with platelet-rich (PRP) and platelet-poor (PPP) plasma from spontaneously hypertensive rats (SHR), in addition to SVEC4-10 cells pre-incubated with γ-TPN (50, 100, and 200 µM) for 24 h. SHR animals were pre-treated by gavage with γ-TPN for 7 days and divided into four groups (negative control, 25, 50, and 100 mg/kg). Blood samples were collected to measure nitrite using the Griess reagent. Gamma-TPN proved to be quite lipid-soluble (Log P = +4.50), with a qualified profile of similarity to the drug, good bioavailability, and adequate pharmacokinetics. It exhibited affinity mainly for the P2Y12 receptor (6.450 ± 0.232 Kcal/mol), moderate cytotoxicity for L-929 (CC50 = 333.3 µM) and SVEC 4-10 (CC50 = 366.7 µM) cells. The presence of γ-TPN in SVEC 4-10 cells was also able to reduce platelet aggregation by 51.57 and 44.20% at lower concentrations (50 and 100 µM, respectively). Then, γ-TPN has good affinity with purinergic receptors and an effect on the reversal of platelet aggregation and oxidative stress, being promising and safe for therapeutic targets and subsequent studies on the control of thromboembolic diseases.

2.
J Ethnopharmacol ; 332: 118216, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642622

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have shown promise in the search for new treatments of pulmonary emphysema. Anadenanthera colubrina, a species native to the Caatinga biome in northeastern Brazil, is widely recognized and traditionally employed in the treatment of pulmonary diseases. Many studies corroborate popular knowledge about the medicinal applications of A. colubrina, which has demonstrated a remarkable variety of pharmacological properties, however, its anti-inflammatory and antioxidant properties are highlighted. AIM OF THE STUDY: The objective of this study was to investigate the anti-inflammatory potential of the crude hydroethanolic extract of A. colubrina var. cebil (Griseb.) Altschul on pulmonary emphysema in rats as well as to determine its potential genotoxic and cytotoxic effects using the micronucleus assay. MATERIALS AND METHODS: The stem bark of the plant was collected in Pimenteiras-PI and sample was extracted by maceration using 70% ethanol. A portion of the extract underwent phytochemical analyses using TLC and HPLC. In this study, 8-week-old, male Wistar rats weighing approximately ±200 g was utilized following approval by local ethics committee for animal experimentation (No. 718/2022). Pulmonary emphysema was induced through orotracheal instillation of elastase, and treatment with A. colubrina extract or dexamethasone (positive control) concomitantly during induction. Twenty-eight days after the initiation of the protocol, plasma was used for cytokine measurement. Bronchoalveolar lavage (BAL) was used for leukocyte count. After euthanasia, lung samples were processed for histological analysis and quantification of oxidative stress markers. The micronucleus test was performed by evaluating the number of polychromatic erythrocytes (PCE) with micronuclei (MNPCE) to verify potential genotoxic effects of A. colubrina. A differential count of PCE and normochromatic erythrocytes (NCE) was performed to verify the potential cytotoxicity of the extract. Parametric data were subjected to normality analysis and subsequently to analysis of variance and Tukey or Dunnett post-test, non-parametric data were treated using the Kruskal-Wallis test with Dunn's post-test for unpaired samples. P value < 0.05 were considered significant. RESULTS: The A. colubrina extract did not show a significant increase in the number of MNPCE (p > 0.05), demonstrating low genotoxicity. No changes were observed in the PCE/NCE ratio of treated animals, compared with the vehicle, suggesting low cytotoxic potential of the extract. A significant reduction (p < 0.05) in neutrophilic inflammation was observed in the lungs of rats treated with the extract, evidenced by presence of these cells in both the tissue and BAL. The extract also demonstrated pulmonary antioxidant activity, with a significant decrease (p < 0.05) in myeloperoxidase, malondialdehyde, and nitrite levels. TNFα, IL-1ß, and IL-6 levels, as well as alveolar damage, were significantly reduced in animals treated with A. colubrina extract. Phytochemical analyses identified the presence of phenolic compounds and hydrolysable tannins in the A. colubrina extract. CONCLUSIONS: The findings of this study highlights the safety of the hydroethanolic extract of Anadenanthera colubrina, and demonstrates its potential as a therapeutic approach in the treatment of emphysema. The observed properties of this medicinal plant provide an optimistic outlook in the development of therapies for the treatment of pulmonary emphysema.

3.
Pharmaceutics ; 14(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36559198

RESUMO

Isopropyl gallate (IPG) is a polyphenol obtained from alterations in the gallic acid molecule via acid catalysis with previously reported leishmanicidal and trypanocidal activities. The present study aims to evaluate in silico binding activity towards some targets for antileishmanial chemotherapy against Leishmania major species, and ADMET parameters for IPG, as well as in vitro antileishmanial and cytotoxic effects. Molecular docking was performed using AutoDockVina and BIOVIA Discovery Studio software, whereas in silico analysis used SwissADME, PreADMET and admetSAR software. In vitro antileishmanial activity on promastigotes and amastigotes of Leishmania major, cytotoxicity and macrophages activation were assessed. IPG exhibited affinity for pteridine reductase (PTR1; -8.2 kcal/mol) and oligopeptidase B (OPB; -8.0 kcal/mol) enzymes. ADMET assays demonstrated good lipophilicity, oral bioavailability, and skin permeability, as well as non-mutagenic, non-carcinogenic properties and low risk of cardiac toxicity for IPG. Moreover, IPG inhibited the in vitro growth of promastigotes (IC50 = 90.813 µM), presented significant activity against amastigotes (IC50 = 13.45 µM), promoted low cytotoxicity in macrophages (CC50 = 1260 µM), and increased phagocytic capacity. These results suggest IPG is more selectively toxic to the parasite than to mammalian cells. IPG demonstrated acceptable in silico pharmacokinetics parameters, and reduced infection and infectivity in parasitized macrophages, possibly involving macrophage activation pathways and inhibition of leishmania enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...