Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(7): 1007-1018, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526508

RESUMO

ConspectusThe electrochemical reduction of carbon dioxide (CO2RR) is a promising strategy for mitigating global CO2 emissions while simultaneously yielding valuable chemicals and fuels, such as CO, HCOO-, and C2H4. This approach becomes especially appealing when integrated with surplus renewable electricity, as the ensuing production of fuels could facilitate the closure of the carbon cycle. Despite these advantages, the realization of industrial-scale electrolyzers fed with CO2 will be challenged by the substantial energy inputs required to isolate, pressurize, and purify CO2 prior to electrolysis.To address these challenges, we devised an electrolyzer capable of directly converting reactive carbon solutions (e.g., a bicarbonate-rich eluent that exits a carbon capture unit) into higher value products. This "reactive carbon electrolyzer" operates by reacting (bi)carbonate with acid generated within the electrolyzer to produce CO2 in situ, thereby facilitating CO2RR at the cathode. This approach eliminates the need for expensive CO2 recovery and compression steps, as the electrolyzer can then then coupled directly to the CO2 capture unit.This Account outlines our endeavors in developing this type of electrolyzer, focusing on the design and implementation of materials for electrocatalytic (bi)carbonate conversion. We highlight the necessity for a permeable cathode that allows the efficient transport of (bi)carbonate ions while maintaining a sufficiently high catalytic surface area. We address the importance of the supporting electrolyte, detailing how (bi)carbonate concentration, counter cations, and ionic impurities impact selectivity for products formed in the electrolyzer. We also catalog state-of-the-art performance metrics for reactive carbon electrolyzers (i.e., Faradaic efficiency, full cell voltage, CO2 utilization efficiency) and outline strategies to bridge the gap between these values and those required for commercial operation Collectively, these findings contribute to the ongoing efforts to realize industrial-scale electrochemical reactors for CO2 conversion, bringing us closer to a sustainable and closed-loop carbon cycle.

2.
J Am Chem Soc ; 145(48): 25933-25937, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983190

RESUMO

Electrolytic CO2 reduction fails in the presence of O2. This failure occurs because the reduction of O2 is thermodynamically favored over the reduction of CO2. Consequently, O2 must be removed from the CO2 feed prior to entering an electrolyzer, which is expensive. Here, we show that the use of liquid bicarbonate feedstocks (e.g., aqueous 3.0 M KHCO3), rather than gaseous CO2 feedstocks, enables efficient and selective CO2 reduction without additional procedures for removing O2. This effect is made possible because liquid bicarbonate solutions, which serve as a liquid CO2 carrier, deliver high concentrations of captured CO2 to the cathode, while the low solubility of O2 in aqueous media maintains a low O2 concentration at the same cathode surface. Consequently, electrolyzers fed with liquid bicarbonate feedstocks create an environment at the cathode that favors the reduction of CO2 over O2. We validate this claim by electrochemically converting CO2 into CO with reaction selectivities of 65% at 100 mA cm-2 using a 3.0 M KHCO3 solution bubbled with 100% CO2 or 100% O2. Similar experiments performed with a gaseous CO2 feedstock showed that merely 0.5% of O2 in the feedstock reduced CO selectivity by >90% after 1 h of electrolysis. Our findings demonstrate that a liquid bicarbonate feedstock enables efficient CO2 reduction without the need for expensive O2 removal steps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA