Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 5776, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238874

RESUMO

Sorption mechanism of uranyl by poly(bis[2-(methacryloyloxy)ethyl] phosphate) (PB2MP) functionalised polyvinylidene fluoride (PVDF) track-etched membranes, PB2MP-g-PVDF, was investigated. It was found that uranyl sorption obeyed Langmuir isotherm model giving a maximum U(VI) membrane uptake of 6.73 µmol g-1 and an affinity constant of 9.85 â‹… 106 L mol-1. XPS and TRPL measurements were performed to identify sorbed uranyl oxidation state and its environment. Uranyl was found to be mainly in its hexavalent state, i.e. U(VI), showing that the trapping inside the PB2MP-g-PVDF nanoporous membranes did not change the ion speciation. Two sorbed uranyl life-times (τ1 = 8.8 µs and τ2 = 102.8 µs) were measured by TRPL which pointed out different complexations taking place inside the nanopores. Uranyl sorption by PB2MP-g-PVDF membranes was also found to be pH dependent demonstrating the highest performance at circumneutral pH. In addition, TRPL was demonstrated to be not only a remarkable technique for U(VI) characterization, but also an alternative to voltammetry detection for trace on-site uranyl monitoring using PB2MP-g-PVDF nanoporous membranes.

2.
J Hazard Mater ; 376: 37-47, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121451

RESUMO

Poly-4-vinylpyridine grafted poly(vinylidene difluoride) (P4VP-g-PVDF) nanoporous polymer electrodes were found to be sensitive for Hg(II) analysis. The fabrication and characterization of functionalized nanoporous membrane-electrodes by FESEM and FTIR are presented. Functionalized nanopore charge state versus a large range of pH (1-10) was investigated by registering the streaming potential. This isoelectric point is achieved at the pKa of P4VP (pH = 5). Mercury adsorption at solid-liquid interface obeys a Langmuir law. A protocol for accurate Hg(II) analysis at ppb level was established. Calibration curves were performed and different real water samples (mineral water, ground water, surface water) were spiked and analyzed. The resulting sensor is intended to be integrated into existing systems or used standalone as portable devices. A first generation prototype exhibiting its own integrated potentiostat, its software and set of membrane-electrode pads is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...