Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Mol Biol ; 436(10): 168573, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626867

RESUMO

Iron homeostasis is a critical process for living organisms because this metal is an essential co-factor for fundamental biochemical activities, like energy production and detoxification, albeit its excess quickly leads to cell intoxication. The protein Fur (ferric uptake regulator) controls iron homeostasis in bacteria by switching from its apo- to holo-form as a function of the cytoplasmic level of ferrous ions, thereby modulating gene expression. The Helicobacter pylori HpFur protein has the rare ability to operate as a transcriptional commutator; apo- and holo-HpFur function as two different repressors with distinct DNA binding recognition properties for specific sets of target genes. Although the regulation of apo- and holo-HpFur in this bacterium has been extensively investigated, we propose a genome-wide redefinition of holo-HpFur direct regulon in H. pylori by integration of RNA-seq and ChIP-seq data, and a large extension of the apo-HpFur direct regulon. We show that in response to iron availability, new coding sequences, non-coding RNAs, toxin-antitoxin systems, and transcripts within open reading frames are directly regulated by apo- or holo-HpFur. These new targets and the more thorough validation and deeper characterization of those already known provide a complete and updated picture of the direct regulons of this two-faced transcriptional regulator.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori , Ferro , Regulon , Proteínas Repressoras , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Regulon/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
Pediatr Allergy Immunol ; 33(10): e13853, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36282132

RESUMO

BACKGROUND: A few studies suggest that particulate matter (PM) exposure might play a role in bronchiolitis. However, available data are mostly focused on the risk of hospitalization and come from retrospective studies that provided conflicting results. This prospective study investigated the association between PM (PM2.5 and PM10 ) exposure and the severity of bronchiolitis. METHODS: This prospective cohort study was conducted between November 2019 and February 2020 at the pediatric emergency department of the Fondazione IRCCS Ca' Ospedale Maggiore Policlinico, Milan, Italy. Infants <1 year of age with bronchiolitis were eligible. The bronchiolitis severity score was assessed in each infant and a nasal swab was collected to detect respiratory viruses. The daily PM10 and PM2.5 exposure in the 29 preceding days were considered. Adjusted regression models were employed to evaluate the association between the severity score and PM10 and PM2.5 exposure. RESULTS: A positive association between the PM2.5 levels and the severity score was found at day-2 (ß 0.0214, 95% CI 0.0011-0.0417, p = .0386), day-5 (ß 0.0313, 95% CI 0.0054-0.0572, p = .0179), day-14 (ß 0.0284, 95% CI 0.0078-0.0490, p = .0069), day-15 (ß 0.0496, 95% CI 0.0242-0.0750, p = .0001) and day-16 (ß 0.0327, 95% CI 0.0080-0.0574, p = .0093).Similar figures were observed considering the PM10 exposure and limiting the analyses to infants with respiratory syncytial virus. CONCLUSION: This study shows for the first time a direct association between PM2.5 and PM10 levels and the severity of bronchiolitis.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Bronquiolite , Lactente , Criança , Humanos , Material Particulado/efeitos adversos , Estudos Prospectivos , Estudos de Coortes , Estudos Retrospectivos , Bronquiolite/epidemiologia , Exposição Ambiental , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise
3.
J Biotechnol ; 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35182607

RESUMO

While in recent years the key role of non-coding RNAs (ncRNAs) in regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces, and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: i.) the wild type strain; ii.) an isogenic pirA-defective mutant with central carbon metabolism imbalance, "relaxed" phenotype, and repression of antibiotic production; iii.) a pirA-derivative strain harboring a "stringent" RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.

4.
Antibiotics (Basel) ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34438997

RESUMO

While in recent years the key role of non-coding RNAs (ncRNAs) in the regulation of gene expression has become increasingly evident, their interaction with the global regulatory circuits is still obscure. Here we analyzed the structure and organization of the transcriptome of Streptomyces ambofaciens, the producer of spiramycin. We identified ncRNAs including 45 small-RNAs (sRNAs) and 119 antisense-RNAs (asRNAs I) that appear transcribed from dedicated promoters. Some sRNAs and asRNAs are unprecedented in Streptomyces and were predicted to target mRNAs encoding proteins involved in transcription, translation, ribosomal structure and biogenesis, and regulation of morphological and biochemical differentiation. We then compared ncRNA expression in three strains: (i) the wild-type strain; (ii) an isogenic pirA-defective mutant with central carbon metabolism imbalance, "relaxed" phenotype, and repression of antibiotic production; and (iii) a pirA-derivative strain harboring a "stringent" RNA polymerase that suppresses pirA-associated phenotypes. Data indicated that the expression of most ncRNAs was correlated to the stringent/relaxed phenotype suggesting novel effector mechanisms of the stringent response.

5.
Cells ; 10(6)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198576

RESUMO

Infants with congenital diaphragmatic hernia (CDH) are at high risk of postnatal mortality due to lung hypoplasia and arterial pulmonary hypertension. In severe cases, prenatal intervention by fetal endoscopic tracheal occlusion (FETO) can improve survival by accelerating lung growth. However, postnatal mortality remains in the range of about 50% despite fetal treatment, and there is currently no clear explanation for this different clinical response to FETO. We evaluated the concentration of extracellular vesicles (EVs) and associated microRNA expression in amniotic and tracheal fluids of fetuses with CDH undergoing FETO, and we examined the association between molecular findings and postnatal survival. We observed a higher count of EVs in the amniotic fluid of non-survivors and in the tracheal fluid sampled in utero at the time of reversal of tracheal occlusion, suggesting a pro-inflammatory lung reactivity that is already established in utero and that could be associated with a worse postnatal clinical course. In addition, we observed differential regulation of four EV-enclosed miRNAs (miR-379-5p, miR-889-3p; miR-223-3p; miR-503-5p) in relation to postnatal survival, with target genes possibly involved in altered lung development. Future research should investigate molecular therapeutic agents targeting differentially regulated miRNAs to normalize their expression and potentially improve clinical outcomes.


Assuntos
Líquido Amniótico/metabolismo , Vesículas Extracelulares/metabolismo , Doenças Fetais/metabolismo , Feto/metabolismo , Hérnias Diafragmáticas Congênitas/metabolismo , MicroRNAs/metabolismo , Traqueia/embriologia , Vesículas Extracelulares/patologia , Feminino , Doenças Fetais/cirurgia , Feto/cirurgia , Hérnias Diafragmáticas Congênitas/cirurgia , Humanos , Índice de Gravidade de Doença , Traqueia/cirurgia
6.
Cell Death Discov ; 6: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566253

RESUMO

Conventional central chondrosarcoma (CCC) is a malignant bone tumor that is characterized by the production of chondroid tissue. Since radiation therapy and chemotherapy have limited effects on CCC, treatment of most patients depends on surgical resection. This study aimed to identify the expression profiles of microRNAs (miRNAs) and isomiRs in CCC tissues to highlight their possible participation to the regulation of pathways critical for the formation and growth of this type of tumor. Our study analyzed miRNAs and isomiRs from Grade I (GI), Grade II (GII), and Grade III (GIII) histologically validated CCC tissue samples. While the different histological grades shared a similar expression profile for the top abundant miRNAs, we found several microRNAs and isomiRs showing a strong different modulation in GII + GIII vs GI grade samples and their involvement in tumor biology could be consistently hypothesized. We then in silico validated these differently expressed miRNAs in a larger chondrosarcoma public dataset and confirmed the expression trend for 17 out of 34 miRNAs. Our results clearly suggests that the contribution of miRNA deregulation, and their targeted pathways, to the progression of CCC could be relevant and strongly indicates that when studying miRNA deregulation in tumors, not only the canonical miRNAs, but the whole set of corresponding isomiRs should be taken in account. Improving understanding of the precise roles of miRNAs and isomiRs over the course of central chondrosarcoma progression could help identifying possible targets for precision medicine therapeutic intervention.

7.
Microorganisms ; 7(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614448

RESUMO

Bacteria respond to different environmental stresses by reprogramming the transcription of specific genes whose proper expression is critical for their survival. In this regard, the heat-shock response, a widespread protective mechanism, triggers a sudden increase in the cellular concentration of different proteins, including molecular chaperones and proteases, to preserve protein folding and maintain cellular homeostasis. In the medically important gastric pathogen Helicobacter pylori the regulation of the principal heat-shock genes is under the transcriptional control of two repressor proteins named HspR and HrcA. To define the HrcA regulon, we carried out whole transcriptome analysis through RNA-sequencing, comparing the transcriptome of the H. pylori G27 wild type strain to that of the isogenic hrcA-knockout strain. Overall, differential gene expression analysis outlined 49 genes to be deregulated upon hrcA gene inactivation. Interestingly, besides controlling the transcription of genes coding for molecular chaperones and stress-related mediators, HrcA is involved in regulating the expression of proteins whose function is linked to several cellular processes crucial for bacterial survival and virulence. These include cell motility, membrane transporters, Lipopolysaccharide modifiers and adhesins. The role of HrcA as a central regulator of H. pylori transcriptome, as well as its interconnections with the HspR regulon are here analyzed and discussed. As the HrcA protein acts as a pleiotropic regulator, influencing the expression of several stress-unrelated genes, it may be considered a promising target for the design of new antimicrobial strategies.

8.
JCI Insight ; 52019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31184999

RESUMO

Progression of fibrosis and the development of cirrhosis are responsible for the liver related morbidity and mortality associated with chronic liver diseases. There is currently a great unmet need for effective anti-fibrotic strategies. Stem cells play a central role in wound healing responses to restore liver homeostasis following injury. Here we tested the hypothesis that extracellular vesicles (EVs) isolated from induced pluripotent stem cells (iPSC) modulate hepatic stellate cell (HSCs) activation and may have anti-fibrotic effects. Human iPSCs were generated by reprogramming primary skin fibroblasts. EVs were isolated by differential centrifugation, quantified by flow cytometry (FACS) and characterized by dynamic light scattering (DLS) and electron microscopy (TEM). Primary human HSCs were activated with TGFß (10 ng/mL) and exposed to iPSC-EVs. Efficacy of iPSC-EVs was tested on HSC in vitro and in two murine models of liver injury (CCl4 and bile duct ligation). Characterization of iPSC-derived EVs by flow cytometry identified a large population of EVs released by iPSC, primarily with a diameter of 300 nm and that could be visualized by TEM as round, cup-shaped objects. Fluorescent tracing assays detected iPSC-EVs in HSC cytosol after a short incubation and EV uptake by HSCs resulted in both decrease of pro-fibrogenic markers αSMA, CollagenIα1, Fibronectin and TIMP-1 and HSC pro-fibrogenic responses such as chemotaxis and proliferation. Genomics analyses of iPSC-EV miRNA cargo revealed 22 highly expressed miRNAs, among which miR-92a-3p resulted the most abundant. Transcriptome analysis identified 60 genes down-modulated and 235 up-regulated in TGF-ß-primed HSC in presence or absence of iPSC-EVs. Intravenous injection of iPSC-EVs in CCl4 and bile duct ligation-induced liver fibrosis resulted in anti-fibrotic effects at protein and gene levels. Results of this study identify iPSC-EVs as a novel anti-fibrotic approach that may reduce or reverse liver fibrosis in patients with chronic liver disease.


Assuntos
Vesículas Extracelulares/metabolismo , Células Estreladas do Fígado/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/terapia , Animais , Apoptose , Movimento Celular , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/terapia , Quimiotaxia , Modelos Animais de Doenças , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
9.
Sci Rep ; 8(1): 16912, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442901

RESUMO

Pseudomonas spp. are endowed with a complex pathway for glucose uptake that relies on multiple transporters. In this work we report the construction and characterization of Pseudomonas aeruginosa single and multiple mutants with unmarked deletions of genes encoding outer membrane (OM) and inner membrane (IM) proteins involved in glucose uptake. We found that a triple ΔgltKGF ΔgntP ΔkguT mutant lacking all known IM transporters (named GUN for Glucose Uptake Null) is unable to grow on glucose as unique carbon source. More than 500 genes controlling both metabolic functions and virulence traits show differential expression in GUN relative to the parental strain. Consistent with transcriptomic data, the GUN mutant displays a pleiotropic phenotype. Notably, the genome-wide transcriptional profile and most phenotypic traits differ between the GUN mutant and the wild type strain irrespective of the presence of glucose, suggesting that the investigated genes may have additional roles besides glucose transport. Finally, mutants carrying single or multiple deletions in the glucose uptake genes showed attenuated virulence relative to the wild type strain in Galleria mellonella, but not in Caenorhabditis elegans infection model, supporting the notion that metabolic functions may deeply impact P. aeruginosa adaptation to specific environments found inside the host.


Assuntos
Pleiotropia Genética , Glucose/metabolismo , Modelos Biológicos , Mutação/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Animais , Biofilmes/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Carbono/farmacologia , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Mariposas/microbiologia , Oligopeptídeos/metabolismo , Oxirredução , Fenótipo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Piocianina/metabolismo , Percepção de Quorum/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética , Virulência
10.
Front Microbiol ; 9: 1887, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154784

RESUMO

The ability of pathogens to perceive environmental conditions and modulate gene expression accordingly is a crucial feature for bacterial survival. In this respect, the heat-shock response, a universal cellular response, allows cells to adapt to hostile environmental conditions and to survive during stress. In the major human pathogen Helicobacter pylori the expression of chaperone-encoding operons is under control of two auto-regulated transcriptional repressors, HrcA and HspR, with the latter acting as the master regulator of the regulatory circuit. To further characterize the HspR regulon in H. pylori, we used global transcriptome analysis (RNA-sequencing) in combination with Chromatin Immunoprecipitation coupled with deep sequencing (ChIP-sequencing) of HspR genomic binding sites. Intriguingly, these analyses showed that HspR is involved in the regulation of different crucial cellular functions through a limited number of genomic binding sites. Moreover, we further characterized HspR-DNA interactions through hydroxyl-radical footprinting assays. This analysis in combination with a nucleotide sequence alignment of HspR binding sites, revealed a peculiar pattern of DNA protection and highlighted sequence conservation with the HAIR motif (an HspR-associated inverted repeat of Streptomyces spp.). Site-directed mutagenesis demonstrated that the HAIR motif is fundamental for HspR binding and that additional nucleotide determinants flanking the HAIR motif are required for complete binding of HspR to its operator sequence spanning over 70 bp of DNA. This finding is compatible with a model in which possibly a dimer of HspR recognizes the HAIR motif overlapping its promoter for binding and in turn cooperatively recruits two additional dimers on both sides of the HAIR motif.

11.
Metab Eng ; 48: 254-268, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29944936

RESUMO

Pirins are evolutionarily conserved iron-containing proteins that are found in all kingdoms of life, and have been implicated in diverse molecular processes, mostly associated with cellular stress. In the present study, we started from the evidence that the insertional inactivation of pirin-like gene SAM23877_RS18305 (pirA) by ΦC31 Att/Int system-based vectors in spiramycin-producing strain Streptomyces ambofaciens ATCC 23877 resulted in marked effects on central carbon and energy metabolism gene expression, high sensitivity to oxidative injury and repression of polyketide antibiotic production. By using integrated transcriptomic, proteomic and metabolite profiling, together with genetic complementation, we here show that most of these effects could be traced to the inability of the pirA-defective strain to modulate beta-oxidation pathway, leading to an unbalanced supply of precursor monomers for polyketide biosynthesis. Indeed, in silico protein-protein interaction modeling and in vitro experimental validation allowed us to demonstrate that PirA is a novel redox-sensitive negative modulator of very long-chain acyl-CoA dehydrogenase, which catalyzes the first committed step of the beta-oxidation pathway.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação ao Ferro , Engenharia Metabólica , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Oxirredução , Policetídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
12.
BMC Bioinformatics ; 19(1): 36, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409441

RESUMO

BACKGROUND: Over the last few decades, computational genomics has tremendously contributed to decipher biology from genome sequences and related data. Considerable effort has been devoted to the prediction of transcription promoter and terminator sites that represent the essential "punctuation marks" for DNA transcription. Computational prediction of promoters in prokaryotes is a problem whose solution is far from being determined in computational genomics. The majority of published bacterial promoter prediction tools are based on a consensus-sequences search and they were designed specifically for vegetative σ70 promoters and, therefore, not suitable for promoter prediction in bacteria encoding a lot of σ factors, like actinomycetes. RESULTS: In this study we investigated the possibility to identify putative promoters in prokaryotes based on evolutionarily conserved motifs, and focused our attention on GC-rich bacteria in which promoter prediction with conventional, consensus-based algorithms is often not-exhaustive. Here, we introduce G4PromFinder, a novel algorithm that predicts putative promoters based on AT-rich elements and G-quadruplex DNA motifs. We tested its performances by using available genomic and transcriptomic data of the model microorganisms Streptomyces coelicolor A3(2) and Pseudomonas aeruginosa PA14. We compared our results with those obtained by three currently available promoter predicting algorithms: the σ70consensus-based PePPER, the σ factors consensus-based bTSSfinder, and PromPredict which is based on double-helix DNA stability. Our results demonstrated that G4PromFinder is more suitable than the three reference tools for both the genomes. In fact our algorithm achieved the higher accuracy (F1-scores 0.61 and 0.53 in the two genomes) as compared to the next best tool that is PromPredict (F1-scores 0.46 and 0.48). Consensus-based algorithms produced lower performances with the analyzed GC-rich genomes. CONCLUSIONS: Our analysis shows that G4PromFinder is a powerful tool for promoter search in GC-rich bacteria, especially for bacteria coding for a lot of σ factors, such as the model microorganism S. coelicolor A3(2). Moreover consensus-based tools and, in general, tools that are based on specific features of bacterial σ factors seem to be less performing for promoter prediction in these types of bacterial genomes.


Assuntos
Algoritmos , Bactérias/genética , Genoma Bacteriano , Regiões Promotoras Genéticas , Quadruplex G , Motivos de Nucleotídeos , Pseudomonas aeruginosa/genética , Streptomyces coelicolor/genética
13.
Methods Mol Biol ; 1716: 239-265, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29222757

RESUMO

There is a strict interplay between metabolic networks and transcriptional regulation in bacteria; indeed, the transcriptome regulation, affecting the expression of large gene sets, can be used to predict the likely "on" or "off" state of metabolic genes as a function of environmental factors. Up to date, many bacterial transcriptomes have been studied by RNAseq, hundreds of experiments have been performed, and Giga bases of sequences have been produced. All this transcriptional information could potentially be integrated into metabolic networks in order to obtain a more comprehensive view of their regulation and to increase their prediction power.To get high-quality transcriptomic data, to be integrated into metabolic networks, it is paramount to clearly know how to produce highly informative RNA sequencing libraries and how to manage RNA sequencing data.In this chapter, we will get across the main steps of an RNAseq experiment: from removal of ribosomal RNAs, to strand-specific library preparation, till data analysis and integration. We will try to share our experience and know-how, to give you a precise protocol to follow, and some useful recommendations or tips and tricks to adopt in order to go straightforward toward a successful RNAseq experiment.


Assuntos
Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes e Vias Metabólicas
14.
Part Fibre Toxicol ; 14(1): 32, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28899404

RESUMO

BACKGROUND: Exposure to particulate matter (PM) is associated with increased incidence of cardiovascular disease and increased coagulation, but the molecular mechanisms underlying these associations remain unknown. Obesity may increase susceptibility to the adverse effects of PM exposure, exacerbating the effects on cardiovascular diseases. Extracellular vesicles (EVs), which travel in body fluids and transfer microRNAs (miRNAs) between tissues, might play an important role in PM-induced cardiovascular risk. We sought to determine whether the levels of PM with an aerodynamic diameter ≤ 10 µm (PM10) are associated with changes in fibrinogen levels, EV release, and the miRNA content of EVs (EV-miRNAs), investigating 1630 overweight/obese subjects from the SPHERE Study. RESULTS: Short-term exposure to PM10 (Day before blood drawing) was associated with an increased release of EVs quantified by nanoparticle tracking analysis, especially EVs derived from monocyte/macrophage components (CD14+) and platelets (CD61+) which were characterized by flow cytometry. We first profiled miRNAs of 883 subjects by the QuantStudio™ 12 K Flex Real Time PCR System and the top 40 EV-miRNAs were validated through custom miRNA plates. Nine EV-miRNAs (let-7c-5p; miR-106a-5p; miR-143-3p; miR-185-5p; miR-218-5p; miR-331-3p; miR-642-5p; miR-652-3p; miR-99b-5p) were downregulated in response to PM10 exposure and exhibited putative roles in cardiovascular disease, as highlighted by integrated network analysis. PM10 exposure was significantly associated with elevated fibrinogen levels, and five of the nine downregulated EV-miRNAs were mediators between PM10 exposure and fibrinogen levels. CONCLUSIONS: Research on EVs opens a new path to the investigation of the adverse health effects of air pollution exposure. EVs have the potential to act both as markers of PM susceptibility and as potential molecular mechanism in the chain of events connecting PM exposure to increased coagulation, which is frequently linked to exposure and CVD development.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/sangue , Vesículas Extracelulares/efeitos dos fármacos , MicroRNAs/sangue , Obesidade/sangue , Material Particulado/toxicidade , Índice de Massa Corporal , Doenças Cardiovasculares/induzido quimicamente , Estudos Transversais , Vesículas Extracelulares/metabolismo , Feminino , Citometria de Fluxo , Humanos , Exposição por Inalação/análise , Modelos Lineares , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Análise Multivariada , Obesidade/complicações , Tamanho da Partícula
15.
Front Microbiol ; 8: 835, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553270

RESUMO

In this study we have applied an integrated system biology approach to characterize the metabolic landscape of Streptomyces ambofaciens and to identify a list of potential metabolic engineering targets for the overproduction of the secondary metabolites in this microorganism. We focused on an often overlooked growth period (i.e., post-first rapid growth phase) and, by integrating constraint-based metabolic modeling with time resolved RNA-seq data, we depicted the main effects of changes in gene expression on the overall metabolic reprogramming occurring in S. ambofaciens. Moreover, through metabolic modeling, we unraveled a set of candidate overexpression gene targets hypothetically leading to spiramycin overproduction. Model predictions were experimentally validated by genetic manipulation of the recently described ethylmalonyl-CoA metabolic node, providing evidence that spiramycin productivity may be increased by enhancing the carbon flow through this pathway. The goal was achieved by over-expressing the ccr paralog srm4 in an ad hoc engineered plasmid. This work embeds the first metabolic reconstruction of S. ambofaciens and the successful experimental validation of model predictions and demonstrates the validity and the importance of in silico modeling tools for the overproduction of molecules with a biotechnological interest. Finally, the proposed metabolic reconstruction, which includes manually refined pathways for several secondary metabolites with antimicrobial activity, represents a solid platform for the future exploitation of S. ambofaciens biotechnological potential.

16.
Sci Rep ; 7: 45458, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393877

RESUMO

Nickel homeostasis is important for pathogenic and ureolytic bacteria, which use this metal ion as enzymatic cofactor. For example, in the human pathogen Helicobacter pylori an optimal balance between nickel uptake and incorporation in metallo-enzymes is fundamental for colonization of the host. Nickel is also used as cofactor to modulate DNA binding of the NikR regulator, which controls transcription of genes involved in nickel trafficking or infection in many bacteria. Accordingly, there is much interest in a systematic characterization of NikR regulation. Herein we use H. pylori as a model to integrate RNA-seq and ChIP-seq data demonstrating that NikR not only regulates metal-ion transporters but also virulence factors, non-coding RNAs, as well as toxin-antitoxin systems in response to nickel stimulation. Altogether, results provide new insights into the pathobiology of H. pylori and contribute to understand the responses to nickel in other bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Genoma Bacteriano , Helicobacter pylori/genética , Níquel/farmacologia , RNA Bacteriano/química , RNA Bacteriano/isolamento & purificação , RNA Bacteriano/metabolismo , Regulon/genética , Proteínas Repressoras/genética , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos
17.
Sci Rep ; 7: 41063, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112213

RESUMO

Many bacterial regulatory genes appear to be dispensable, as they can be deleted from the genome without loss of bacterial functionalities. In Helicobacter pylori, the hp1043 gene, also known as hsrA, is one of the transcriptional regulator that is essential for cell viability. This gene could not be deleted, nor the amount of protein modulated, supporting the hypothesis that HP1043 could be involved in the regulation of crucial cellular processes. Even though detailed structural data are available for the HP1043 protein, its targets are still ill-defined. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), one of the most powerful approaches to characterize protein-DNA interactions in vivo, we were able to identify genome-wide several new HP1043 binding sites. Moreover, in vitro DNA binding assays enabled precise mapping of the HP1043 binding sites on the new targets, revealing the presence of a conserved nucleotide sequence motif. Intriguingly, a significant fraction of the newly identified binding sites overlaps promoter regions controlling the expression of genes involved in translation. Accordingly, when protein translation was blocked, a significant induction of almost all HP1043 target genes was detected. These observations prompted us to propose HP1043 as a key regulator in H. pylori, likely involved in sensing and in coordinating the response to environmental conditions that provoke an arrest of protein synthesis. The essential role of HP1043 in coordinating central cellular processes is discussed.


Assuntos
Proteínas de Ligação a DNA/genética , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Fatores de Transcrição/genética , Sítios de Ligação , Imunoprecipitação da Cromatina , Regulação Bacteriana da Expressão Gênica , Genoma/genética , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/biossíntese
18.
Oncotarget ; 6(28): 26129-41, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26305418

RESUMO

DIS3 is a catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) domains, recently found mutated in multiple myeloma (MM), a clinically and genetically heterogeneous form of plasma cell (PC) dyscrasia. We analyzed by next-generation sequencing (NGS) the DIS3 PIN and RNB domains in purified bone marrow PCs from 164 representative patients, including 130 cases with MM, 24 with primary PC leukemia and 10 with secondary PC leukemia. DIS3 mutations were found respectively in 18.5%, 25% and 30% of cases. Identified variants were predominantly missense mutations localized in the RNB domain, and were often detected at low allele frequency. DIS3 mutations were preferentially carried by IGH-translocated/nonhyperdiploid patients. Sequential analysis at diagnosis and relapse in a subset of cases highlighted some instances of increasing DIS3 mutation burden during disease progression. NGS also revealed that the majority of DIS3 variants in mutated cases were comparably detectable at transcriptional level. Furthermore, gene expression profiling analysis in DIS3-mutated patients identified a transcriptional signature suggestive for impaired RNA exosome function. In conclusion, these data further support the pathological relevance of DIS3 mutations in plasma cell dyscrasias and suggest that DIS3 may represent a potential tumor suppressor gene in such disorders.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/genética , Perfilação da Expressão Gênica , Mutação , Paraproteinemias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Paraproteinemias/patologia , Prognóstico , Homologia de Sequência de Aminoácidos
19.
Oncotarget ; 6(19): 17543-58, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26046463

RESUMO

Primary plasma cell leukemia (pPCL) is a rare and aggressive form of plasma cell dyscrasia and may represent a valid model for high-risk multiple myeloma (MM). To provide novel information concerning the mutational profile of this disease, we performed the whole-exome sequencing of a prospective series of 12 pPCL cases included in a Phase II multicenter clinical trial and previously characterized at clinical and molecular levels. We identified 1, 928 coding somatic non-silent variants on 1, 643 genes, with a mean of 166 variants per sample, and only few variants and genes recurrent in two or more samples. An excess of C > T transitions and the presence of two main mutational signatures (related to APOBEC over-activity and aging) occurring in different translocation groups were observed. We identified 14 candidate cancer driver genes, mainly involved in cell-matrix adhesion, cell cycle, genome stability, RNA metabolism and protein folding. Furthermore, integration of mutation data with copy number alteration profiles evidenced biallelically disrupted genes with potential tumor suppressor functions. Globally, cadherin/Wnt signaling, extracellular matrix and cell cycle checkpoint resulted the most affected functional pathways. Sequencing results were finally combined with gene expression data to better elucidate the biological relevance of mutated genes. This study represents the first whole-exome sequencing screen of pPCL and evidenced a remarkable genetic heterogeneity of mutational patterns. This may provide a contribution to the comprehension of the pathogenetic mechanisms associated with this aggressive form of PC dyscrasia and potentially with high-risk MM.


Assuntos
Análise Mutacional de DNA/métodos , Exoma , Leucemia Plasmocitária/genética , Análise por Conglomerados , Humanos
20.
Cell Mol Gastroenterol Hepatol ; 1(6): 646-663.e4, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26783552

RESUMO

BACKGROUND&AIMS: Hepatic stellate cells (HSCs) play a key role in liver fibrosis in various chronic liver disorders including nonalcoholic fatty liver disease (NAFLD). The development of liver fibrosis requires a phenotypic switch from quiescent to activated HSCs. The triggers for HSCs activation in NAFLD remain poorly understood. We investigated the role and molecular mechanism of extracellular vesicles (EVs) released by hepatocytes during lipotoxicity in modulation of HSC phenotype. METHODS: EVs were isolated from fat-laden hepatocytes by differential centrifugation and incubated with HSCs. EV internalization and HSCs activation, migration and proliferation were assessed. Loss- and gain-of-functions studies were performed to explore the potential role of PPAR-γ-targeting miRNAs carried by EVs into HSC. RESULTS: Hepatocyte-derived EVs released during lipotoxicity are efficiently internalized by HSCs resulting in their activation, as shown by marked up-regulation of pro-fibrogenic genes (Collagen-I, α-SMA and TIMP-2), proliferation, chemotaxis and wound healing responses. These changes were associated with miRNAs shuttled by EVs and suppression of PPAR-γ expression in HSC. Hepatocyte-derived EVs miRNA content included various miRNAs that are known inhibitors of PPAR-γ expression with miR-128-3p being the most effectively transferred. Furthermore loss- and gain-of-function studies identified miR-128-3p as a central modulator of the effects of EVs on PPAR-γ inhibition and HSC activation. CONCLUSION: Our findings demonstrate a link between fat-laden hepatocyte-derived EVs and liver fibrosis and have potential implications for the development of novel anti-fibrotic targets for NAFLD and other fibrotic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...