Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(29): 15706-15710, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32672308

RESUMO

We demonstrate random laser emission from Rhodamine 6G with ZrTe2 transition metal dichalcogenide (TMD) as nanoscatters, both in powder and 2D nanoflakes liquid suspension. The 2D semimetal ZrTe2 was synthesized by a modified redox exfoliation method to provide single layer TMD, which was employed for the first time as the scatter medium to provide feedback in an organic gain medium random laser. In order to exploit random laser emission and its threshold value, replica symmetry breaking leading to a photonic paramagnetic to photonic spin glass transition in both 2D and 3D (powder) ZrTe2 was demonstrated. One important aspect of mixing organic dyes with ZrTe2 is that there is no chemical reaction leading to dye degradation, demonstrated by operating over more than 2 hours of pulsed (5 Hz) random laser emission.

2.
Appl Opt ; 59(13): D155-D162, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400638

RESUMO

The interplay between gain and scattering of light propagating in disordered media allows operation of random lasers (RLs)-lasers without conventional optical cavities. In the present paper, we review our recent contributions in this area, which include the demonstration of self-second-harmonic and self-sum-frequency generation, the characterization of Lévy's statistics of the output intensity fluctuations, and replica symmetry breaking (analogue to the spin-glass phase transition) by RLs based on nanocrystals containing trivalent neodymium ions.

3.
Nanoscale Adv ; 1(2): 728-734, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132269

RESUMO

Electrospun fiber-based random lasers are environment-friendly flexible systems in which waveguiding/scattering processes provided by their structure with a broad distribution of diameters are essential elements to generate a suitable lasing mechanism. In this work, we prepared electrospun fibers with dual-size diameter distribution (above and below the critical value for waveguiding), allowing that both optical processes can be established in the polymer network. As a result, random laser emission was observed for the electrospun fibers presenting dual-size diameters with rhodamine 6G as the gain medium, characterizing the combination of waveguiding/scattering as an adequate condition for development of organic nanofibrous random lasers. Degradation assays were also performed in order to evaluate the prolonged use of such random laser systems.

4.
Phys Rev Lett ; 119(16): 163902, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29099224

RESUMO

We demonstrate the replica symmetry breaking (RSB) phenomenon in the spontaneous mode-locking regime of a multimode Q-switched Nd:YAG laser. The underlying mechanism is quite distinct from that of the RSB recently observed in random lasers. Here, there is no random medium and the phase is not glassy with incoherently oscillating modes as in random lasers. Instead, in each pulse a specific subset of longitudinal modes are activated in a nondeterministic way, whose coherent oscillation dominates and frustrates the others. The emergence of RSB coincides with the onset of ultrashort pulse generation typical of the spontaneous mode-locking regime, both occurring at the laser threshold. On the other hand, when high losses are introduced, RSB is inhibited and only the amplified stimulated emission with replica symmetry is observed. Our results disclose the only theoretically predicted photonic phase with RSB that remained unobserved so far.

5.
Nat Commun ; 8: 15731, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561064

RESUMO

Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov's theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform.

6.
Opt Lett ; 41(15): 3459-62, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472593

RESUMO

Colloidal-based random lasers (RLs) are highly efficient and have been exploited in a wide range of geometries. However, in the particular case of ethanol solutions of rhodamines and TiO2 particles, the RL behavior is quite unstable due to the fast precipitation of the particles. In this Letter, specially designed amorphous TiO2 particles were synthesized by a sol-gel method, preventing the degradation of the RL for long operating lifetimes of over 105 shots. As a consequence, this modified colloidal RL allowed the observation of a clear replica-symmetry-breaking phase transition from the paramagnetic fluorescent to spin-glass RL behavior, which has not been observed in the system with nonfunctionalized TiO2 particles.

7.
Sci Rep ; 6: 27107, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250647

RESUMO

Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the (4)F3/2 → (4)I11/2 transition of neodymium ions (Nd(3+)), was achieved by exciting the Nd(3+) with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the (4)F9/2, ((4)F7/2,(4)S3/2), ((4)F5/2,(2)H9/2), and (4)F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission.

8.
Sci Rep ; 6: 27987, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27292095

RESUMO

Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...