Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 128(3): 391-402, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24117850

RESUMO

Calmodulin regulated spectrin-associated protein 1 (CAMSAP1) is a vertebrate microtubule-binding protein, and a representative of a family of cytoskeletal proteins that arose with animals. We reported previously that the central region of the protein, which contains no recognized functional domain, inhibited neurite outgrowth when over-expressed in PC12 cells [Baines et al., Mol. Biol. Evol. 26 (2009), p. 2005]. The CKK domain (DUF1781) binds microtubules and defines the CAMSAP/ssp4 family of animal proteins (Baines et al. 2009). In the central region, three short well-conserved regions are characteristic of CAMSAP-family members. One of these, CAMSAP-conserved region 1 (CC1), bound to both ßIIΣ1-spectrin and Ca(2+)/calmodulin in vitro. The binding of Ca(2+)/calmodulin inhibited spectrin binding. Transient expression of CC1 in PC12 cells inhibited neurite outgrowth. siRNA knockdown of CAMSAP1 inhibited neurite outgrowth in PC12 cells or primary cerebellar granule cells: this could be rescued in PC12 cells by wild-type CAMSAP1-enhanced green fluorescent protein, but not by a CC1 mutant. We conclude that CC1 represents a functional region of CAMSAP1, which links spectrin-binding to neurite outgrowth.


Assuntos
Calmodulina/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Neuritos/fisiologia , Espectrina/fisiologia , Animais , Axônios/fisiologia , Biologia Computacional , Sequência Conservada , Humanos , Células PC12 , Filogenia , RNA Interferente Pequeno/genética , Ratos , Especificidade da Espécie , Transfecção
2.
Exp Cell Res ; 318(13): 1467-79, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22429617

RESUMO

The 4.1 proteins are cytoskeletal adaptor proteins that are linked to the control of mechanical stability of certain membranes and to the cellular accumulation and cell surface display of diverse transmembrane proteins. One of the four mammalian 4.1 proteins, 4.1R (80 kDa/120 kDa isoforms), has recently been shown to be required for the normal operation of several ion transporters in the heart (Stagg MA et al. Circ Res, 2008; 103: 855-863). The other three (4.1G, 4.1N and 4.1B) are largely uncharacterised in the heart. Here, we use specific antibodies to characterise their expression, distribution and novel activities in the left ventricle. We detected 4.1R, 4.1G and 4.1N by immunofluorescence and immunoblotting, but not 4.1B. Only one splice variant of 4.1N and 4.1G was seen whereas there are several forms of 4.1R. 4.1N, like 4.1R, was present in intercalated discs, but unlike 4.1R, it was not localised at the lateral plasma membrane. Both 4.1R and 4.1N were in internal structures that, at the level of resolution of the light microscope, were close to the Z-disc (possibly T-tubules). 4.1G was also in intracellular structures, some of which were coincident with sarcoplasmic reticulum. 4.1G existed in an immunoprecipitable complex with spectrin and SERCA2. 80 kDa 4.1R was present in subcellular fractions enriched in intercalated discs, in a complex resistant to solubilization under non-denaturing conditions. At the intercalated disc 4.1R does not colocalise with the adherens junction protein, ß-catenin, but does overlap with the other plasma membrane signalling proteins, the Na/K-ATPase and the Na/Ca exchanger NCX1. We conclude that isoforms of 4.1 proteins are differentially compartmentalised in the heart, and that they form specific complexes with proteins central to cardiomyocyte Ca(2+) metabolism.


Assuntos
Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Compartimento Celular , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Homeostase , Immunoblotting , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Microscopia de Fluorescência , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Espectrina/química , Espectrina/metabolismo
3.
J Biol Chem ; 285(26): 20180-91, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20421304

RESUMO

Dynein light chain 1 (LC1), a member of the leucine-rich repeat protein family, has been shown to be engaged in controlling flagellar motility in Chlamydomonas reinhardtii and Trypanosoma brucei via its interaction with the dynein gamma heavy chain. In Plasmodium falciparum, we have identified the LC1 ortholog, designated Pfdlc1. Negative attempts to disrupt the dlc1 gene by reverse genetic approaches in both P. falciparum and P. berghei suggest either its essentiality for parasite survival or the inaccessibility of its locus. Expression studies revealed high levels of DLC1 protein in late trophozoites and schizonts, pointing to an unexpected role of this protein in blood-stage parasites as they do not have flagella. Interactions studies and co-immunoprecipitation experiments revealed that PfDLC1 was able to bind to P. falciparum myosin A and actin 1. The PfDLC1 interacting domains present in P. falciparum myosin A and actin 1 were mapped to sequences containing SDIE and/or EEMKT motifs present in the upper 50-kDa segment of the myosin A head domain and in the subdomain IV of actin 1, respectively. Detection of PfDLC1 by fluorescence tagging and immunofluorescence staining using specific antibodies showed a cytoplasmic location similar to actin and immunofluorescence studies showed a co-localization of PfDLC1 and myosin A. Taken together, these findings suggest that PfDLC1 might play an important role in P. falciparum erythrocytic stages by its interaction with myosin A and actin 1, known to be essential for parasite development.


Assuntos
Actinas/metabolismo , Dineínas/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Membrana Celular/metabolismo , Citoplasma/metabolismo , Dineínas/química , Dineínas/genética , Eritrócitos/parasitologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Estágios do Ciclo de Vida , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo
4.
Mol Biol Evol ; 26(9): 2005-14, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19508979

RESUMO

We describe a structural domain common to proteins related to human calmodulin-regulated spectrin-associated protein1 (CAMSAP1). Analysis of the sequence of CAMSAP1 identified a domain near the C-terminus common to CAMSAP1 and two other mammalian proteins KIAA1078 and KIAA1543, which we term a CKK domain. This domain was also present in invertebrate CAMSAP1 homologues and was found in all available eumetazoan genomes (including cnidaria), but not in the placozoan Trichoplax adherens, nor in any nonmetazoan organism. Analysis of codon alignments by the sitewise likelihood ratio method gave evidence for strong purifying selection on all codons of mammalian CKK domains, potentially indicating conserved function. Interestingly, the Drosophila homologue of the CAMSAP family is encoded by the ssp4 gene, which is required for normal formation of mitotic spindles. To investigate function of the CKK domain, human CAMSAP1-enhanced green fluorescent protein (EGFP) and fragments including the CKK domain were expressed in HeLa cells. Both whole CAMSAP1 and the CKK domain showed localization coincident with microtubules. In vitro, both whole CAMSAP1-glutathione-s-transferase (GST) and CKK-GST bound to microtubules. Immunofluorescence using anti-CAMSAP1 antibodies on cerebellar granule neurons revealed a microtubule pattern. Overexpression of the CKK domain in PC12 cells blocked production of neurites, a process that requires microtubule function. We conclude that the CKK domain binds microtubules and represents a domain that evolved with the metazoa.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Microtúbulos/metabolismo , Espectrina/química , Espectrina/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Células HeLa , Humanos , Funções Verossimilhança , Microtúbulos/ultraestrutura , Dados de Sequência Molecular , Neuritos/metabolismo , Células PC12 , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
5.
Circ Res ; 103(8): 855-63, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18787192

RESUMO

The 4.1 proteins are a family of multifunctional adaptor proteins. They promote the mechanical stability of plasma membranes by interaction with the cytoskeletal proteins spectrin and actin and are required for the cell surface expression of a number of transmembrane proteins. Protein 4.1R is expressed in heart and upregulated in deteriorating human heart failure, but its functional role in myocardium is unknown. To investigate the role of protein 4.1R on myocardial contractility and electrophysiology, we studied 4.1R-deficient (knockout) mice (4.1R KO). ECG analysis revealed reduced heart rate with prolonged Q-T interval in 4.1R KO. No changes in ejection fraction and fractional shortening, assessed by echocardiography, were found. The action potential duration in isolated ventricular myocytes was prolonged in 4.1R KO. Ca(2+) transients were larger and slower to decay in 4.1R KO. The sarcoplasmic reticulum Ca(2+) content and Ca(2+) sparks frequency were increased. The Na(+)/Ca(2+) exchanger current density was reduced in 4.1R KO. The transient inward current inactivation was faster and the persistent Na(+) current density was increased in the 4.1R KO group, with possible effects on action potential duration. Although no major morphological changes were noted, 4.1R KO hearts showed reduced expression of NaV1.5alpha and increased expression of protein 4.1G. Our data indicate an unexpected and novel role for the cytoskeletal protein 4.1R in modulating the functional properties of several cardiac ion transporters with consequences on cardiac electrophysiology and with possible significant roles during normal cardiac function and disease.


Assuntos
Proteínas Sanguíneas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Potenciais de Ação , Animais , Proteínas Sanguíneas/deficiência , Proteínas Sanguíneas/genética , Ecocardiografia , Eletrocardiografia , Frequência Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Contração Miocárdica , Canal de Sódio Disparado por Voltagem NAV1.5 , Retículo Sarcoplasmático/metabolismo , Canais de Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Volume Sistólico , Fatores de Tempo
6.
J Biol Chem ; 282(2): 888-96, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17088250

RESUMO

Spectrin tetramers are cytoskeletal proteins required in the formation of complex animal tissues. Mammalian alphaII- and betaII-spectrin subunits form dimers that associate head to head with high affinity to form tetramers, but it is not known if this interaction is regulated. We show here that the short C-terminal splice variant of betaII-spectrin (betaIISigma2) is a substrate for phosphorylation. In vitro, protein kinase CK2 phosphorylates Ser-2110 and Thr-2159; protein kinase A phosphorylates Thr-2159. Antiphospho-Thr-2159 peptide antibody detected phosphorylated betaIISigma2 in Cos-1 cells. Immunoreactivity was increased in Cos-1 cells by treatment with forskolin, indicating that phosphorylation is promoted by elevated cAMP. The effect of forskolin was counteracted by the cAMP-dependent kinase inhibitor, H89. In vitro, protein kinase A phosphorylation of an active fragment of betaIISigma2 greatly reduced its interaction with alphaII-spectrin at the tetramerization site. Mutation of Thr-2159 to alanine eliminated inhibition by phosphorylation. Among the processes that require spectrin in mammals is the formation of neurites (incipient nerve axons). We tested the relationship of spectrin phosphorylation to neuritogenesis by transfecting the neuronal cell line, PC12, with enhanced green fluorescent protein-coupled fragments of betaIISigma2-spectrin predicted to act as inhibitors of spectrin tetramer formation. Both wild-type and T2159E mutant fragments allowed normal neuritogenesis in PC12 cells in response to nerve growth factor. The mutant T2159A inhibited neuritogenesis. Because the T2159A mutant represents a high affinity inhibitor of tetramer formation, we conclude that tetramers are requisite for neuritogenesis. Furthermore, because both the T2159E mutant and the wild-type allow neuritogenesis, we conclude that the short C-terminal betaII-spectrin is phosphorylated during this process.


Assuntos
Neuritos/metabolismo , Neurônios/metabolismo , Espectrina/química , Espectrina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/farmacologia , Células COS , Caseína Quinase II/metabolismo , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dimerização , Humanos , Dados de Sequência Molecular , Neurônios/ultraestrutura , Células PC12 , Fosforilação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrina/genética , Espectrina/imunologia , Treonina/metabolismo , Transfecção
7.
Mol Biochem Parasitol ; 150(2): 308-17, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17028009

RESUMO

Ookinetes of the genus Plasmodium are motile, invasive cells that develop in the mosquito midgut following ingestion of a parasite-infected blood meal. We show here that ookinetes display gliding motility on glass slides in the presence of insect cells. Moreover, in addition to stationary "flexing" and "twirling" of the cells, two distinct types of movements occur: productive forward translocational motility in straight segment that progresses with an average speed of approximately 6mum/min and rotational motility, which does not lead to forward translocation. Locomotion is reduced by treatment with butanedione monoxime, an inhibitor of myosin ATPase, and by three different actin inhibitors. We also studied the expression during ookinete development of genes encoding actin and two small class XIV myosins, PbMyoA, and PbMyoB. Western immunoblots revealed that PbMyoA is only present in fully mature ookinetes, whilst the other two proteins are additionally expressed in gametocytes and zygotes. Immunofluorescence experiments reveal that MyoA and actin co-localize in the apical tip of the parasite whereas MyoB displays a punctate pattern of expression around the entire cell periphery. Following treatment with jasplakinolide, the apparent level of detectable actin appears to substantially increase and becomes concentrated in a discrete area in the basal pole of the ookinete.


Assuntos
Actinas/fisiologia , Aedes/parasitologia , Miosinas/fisiologia , Plasmodium berghei/química , Plasmodium berghei/fisiologia , Actinas/análise , Aedes/citologia , Animais , Linhagem Celular , Movimento Celular , Sistema Digestório/parasitologia , Miosinas/análise , Oocistos/química , Oocistos/crescimento & desenvolvimento , Oocistos/fisiologia , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/fisiologia
8.
Mol Biol Cell ; 17(4): 2091-100, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16481394

RESUMO

We define here a previously unrecognized structural element close to the heart muscle plasma membrane at the intercalated disc where the myofibrils lead into the adherens junction. At this location, the plasma membrane is extensively folded. Immunofluorescence and immunogold electron microscopy reveal a spectrin-rich domain at the apex of the folds. These domains occur at the axial level of what would be the final Z-disc of the terminal sarcomere in the myofibril, although there is no Z-disc-like structure there. However, a sharp transitional boundary lies between the myofibrillar I-band and intercalated disc thin filaments, identifiable by the presence of Z-disc proteins, alpha-actinin, and N-terminal titin. This allows for the usual elastic positioning of the A-band in the final sarcomere, whereas the transduction of the contractile force normally associated with the Z-disc is transferred to the adherens junctions at the plasma membrane. The axial conjunction of the transitional junction with the spectrin-rich domains suggests a mechanism for direct communication between intercalated disc and contractile apparatus. In particular, it provides a means for sarcomeres to be added to the ends of the cells during growth. This is of particular relevance to understanding myocyte elongation in dilated cardiomyopathy.


Assuntos
Junções Aderentes/ultraestrutura , Membrana Celular/química , Miocárdio/ultraestrutura , Espectrina/análise , Junções Aderentes/química , Animais , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Sarcômeros/ultraestrutura
9.
Front Biosci ; 10: 3020-33, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15970557

RESUMO

The membrane-associated cytoskeleton of the cardiac muscle cell is emerging as an important element in the maintenance of normal cell functioning. Recently it was shown that when proteins (betaII-spectrin, muscle Lim-only protein, ankyrin-B, ankyrin-G) of this system are defective or deficient, cardiac malfunction ensues. It is well-established that the spectrin cytoskeleton is associated with the plasma membrane, but it was only lately demonstrated that its components also lie on internal cell membranes. This is particularly apparent in muscle cells of the heart which contain specialised intracellular membrane compartments particular to this cell type such as the sarcoplasmic reticulum and T-tubules. Cardiomyocytes are subjected to constant mechanical stress. Since their mechanics are controlled through coordination of calcium fluxes mediated via cell membrane-based assemblies, it is imperative that these essential elements withstand the displacement forces of contraction. Cardiomyocyte spectrin locates the multifunctional spectrin/actin-binding and membrane-binding component, protein 4.1, and they act together on the plasma membrane as well as on internal membranes. We have found that cardiac protein 4.1 links to the calcium handling apparatus whilst spectrins connect with the sarcomeric contractile elements of the cell. Overall this assembly fulfils roles in stabilising cardiomyocyte cell membranes and in coordinating the macromolecular protein accumulations which regulate and accomplish cardiac molecular crosstalk, whilst at the same time enabling the muscle cells to resist extreme forces of contraction.


Assuntos
Citoesqueleto/metabolismo , Coração/fisiologia , Miocárdio/citologia , Isoformas de Proteínas/metabolismo , Espectrina/metabolismo , Animais , Cálcio/metabolismo , Proteínas do Citoesqueleto , Coração/fisiopatologia , Mamíferos , Mutação , Miocárdio/metabolismo , Espectrina/genética
10.
J Mol Biol ; 349(1): 113-25, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15876372

RESUMO

A novel form of actomyosin regulation has recently been proposed in which the polymerisation of new actin filaments regulates apicomplexan parasite motility. Here, we identified actin I in the merozoites of Plasmodium falciparum by mass spectrometry. The only post-translational modification is acetylation of the N terminus (acetyl-Gly-Glu-actin), while methylation of histidine 73, a common modification for actin, is absent. Results obtained with anti-actin antibodies suggest that, in contrast to a previous report, there is no actin-ubiquitin conjugate in merozoites. About half of the extracted monomeric actin polymerised and actin filaments could be sedimented at 500,000g. In contrast, centrifugation at 100,000g, conditions commonly used to sediment filamentous actin, yielded very little F-actin. In a functional characterisation using an in vitro motility assay, actin filaments moved over myosin at a velocity indistinguishable from that of rabbit skeletal actin. Filament length, however, was too short to be resolved by conventional fluorescence microscopy. On electron micrographs an average filament length of approximately 100nm was determined. We also identified by mass spectrometry proteins co-purifying with filamentous actin, which are potential actin-binding proteins. Our results demonstrate differences in actin filament dynamics for an apicomplexan parasite, which could be due to specific properties of the actin and/or actin-regulatory proteins.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Plasmodium falciparum/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/isolamento & purificação , Animais , Espectrometria de Massas , Microscopia Eletrônica , Plasmodium falciparum/ultraestrutura , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína
11.
Mamm Genome ; 16(3): 137-51, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15834631

RESUMO

The spectrin-based cytoskeleton assembly has emerged as a major player in heart functioning; however, cardiac protein 4.1, a key constituent, is uncharacterized. Protein 4.1 evolved to protect cell membranes against mechanical stresses and to organize membrane microstructure. 4.1 Proteins are multifunctional and, among other activities, link integral/signaling proteins on the plasma and internal membranes with the spectrin-based cytoskeleton. Four genes, EPB41, EPB41L1, EPB41L2, and EPB41L3 encode proteins 4.1R, 4.1N, 4.1G, and 4.1B, respectively. All are extensively spliced. Different isoforms are expressed according to tissue and developmental state, individual function being controlled through inclusion/exclusion of interactive domains. We have defined mouse and human cardiac 4.1 transcripts; other than 4. 1B in humans, all genes show activity. Cardiac transcripts constitutively include conserved FERM and C-terminal domains; both interact with membrane-bound signaling/transport/cell adhesion molecules. Variable splicing within and adjacent to the central spectrin/actin-binding domain enables regulation of cytoskeleton-binding activity. A novel heart-specific exon occurs in human 4.1G, but not in mouse. Immunofluorescence reveals 4.1 staining within mouse cardiomyocytes; thus, both at the plasma membrane and, interdigitated with sarcomeric myosin, across myofibrils in regions close to the sarcoplasmic reticulum. These are all regions to which spectrin locates. 4.1R in human heart shows similar distribution; however, there is limited plasma membrane staining. We conclude that cardiac 4.1s are highly regulated in their ability to crosslink plasma/integral cell membranes with the spectrin-actin cytoskeleton. We speculate that over the repetitive cycles of heart muscle contraction and relaxation, 4.1s are likely to locate, support, and coordinate functioning of key membrane-bound macromolecular assemblies.


Assuntos
Proteínas Sanguíneas/biossíntese , Baixo Débito Cardíaco/fisiopatologia , Proteínas Associadas aos Microtúbulos/biossíntese , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Western Blotting , Membrana Celular/metabolismo , Clonagem Molecular , Proteínas do Citoesqueleto , Éxons , Imunofluorescência , Humanos , Proteínas de Membrana , Camundongos , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Estrutura Terciária de Proteína/genética , Espectrina/análise , Transcrição Gênica
12.
Cell Mol Biol Lett ; 10(1): 135-49, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15809685

RESUMO

The proteins, spectrin and 4.1 confer support and resilience to animal cell membranes, and promote assembly of multimeric, membrane-bound signalling complexes. Protein 4.1 also plays important roles in tumour suppression and the regulation of cell proliferation. To assess relative tissue expression of the four genes encoding human protein 4.1, we measured mRNA levels using quantitative real-time polymerase chain reaction. We compared 4.1 expression with that of a major splice variant of spectrin, betaIISigma2 that has a shortened C-terminus lacking a pleckstrin homology domain. mRNA for 4.1R is four-fold higher in bone marrow than in tissues with the next highest prevalence: cerebellum, lung, testis and thymus. 4.1G mRNA is highly expressed in brain, spinal cord and testis; 4.1N in brain, spinal cord and adrenal gland; 4.1B in testis, brain, spinal cord, and kidney. Thus, 4.1N, 4.1B and 4.1G all show high accumulation in nervous tissues. mRNA for betaIISigma2-spectrin is ubiquitous, but most abundant in cardiac and nervous tissues. Comparative transcript abundance was analysed in heart and brain. betaIISigma2-spectrin was the most abundant transcript in heart with levels 5 fold greater than 4.1G or 4.1N and at least 9 fold greater than 4.1B. In brain, 4.1N was the most abundant transcript, with levels 2.4 fold greater than 4.1B and at least 4 fold greater than 4.1G or betaIISigma2-spectrin. 4.1R abundance was very low in both tissues. Whilst we expected that 4.1 mRNAs would feature highly in muscle and nerve, we note their high abundance in testis, indicating previously unsuspected functions in reproduction.


Assuntos
Proteínas Sanguíneas/genética , Proteínas Associadas aos Microtúbulos/genética , RNA Mensageiro/metabolismo , Espectrina/genética , Proteínas Sanguíneas/biossíntese , Medula Óssea/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Humanos , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas dos Microfilamentos , Proteínas Associadas aos Microtúbulos/biossíntese , Miocárdio/metabolismo , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Especificidade de Órgãos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrina/biossíntese , Testículo/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética
13.
Cell Motil Cytoskeleton ; 60(4): 200-13, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15754360

RESUMO

Six myosins genes are now annotated in the Plasmodium falciparum Genome Project. Malaria myosins have been named alphabetically; accordingly, we refer to the two latest additions as Pfmyo-E and Pfmyo-F. Both new myosins contain regions characteristic of the functional motor domain of "true" myosins and, unusually for P. falciparum myosins, Pfmyo-F encodes two consensus IQ light chain-binding motifs. Phylogenetic analysis of the 17 currently known apicomplexan myosins together with one representative of each myosin class clusters all but one of the apicomplexan sequences together in Class XIV. This refines the earlier definition of the Class XIV Subclasses XIVa and XIVb. RT-PCR on blood stage parasite mRNA amplifies a specific product for all six myosins and each shows developmentally regulated transcription. Thus: Pfmyo-A and Pfmyo-B genes are transcribed throughout development; Pfmyo-C is predominant in trophozoites; Pfmyo-D occurs in trophozoites and schizonts; Pfmyo-E though barely present in earlier stages is abundant in schizonts; Pfmyo-F increases steadily throughout development and maturation. It is known that Pfmyo-A and Pfmyo-B are synthesised during late schizogony and we now show that Pfmyo-D expression is also temporally regulated to late trophozoites and schizonts where it distributes close to segregating nuclei. Thus, in asexual stages myosin synthesis does not always parallel transcript accumulation, showing that translation is also regulated. The implication is that the mRNAs are either subjected to turnover, synthesised and degraded, or that they are sequestered in an inactivate form until required for protein synthesis.


Assuntos
Regulação da Expressão Gênica/fisiologia , Miosinas/biossíntese , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/biossíntese , Animais , Miosinas/genética , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Biossíntese de Proteínas , Proteínas de Protozoários/genética , Transcrição Gênica
14.
J Muscle Res Cell Motil ; 25(2): 119-26, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15360127

RESUMO

Spectrin and its associated proteins are essential for the integrity of muscle cells and there is increasing evidence for their involvement in signalling pathways as well as having a structural function in mediating stress. Spectrin is a multigene family and it is essential to determine which isoforms are present and their location in the cell. In heart muscle, we have found that one spectrin isoform, alphaII-spectrin, is strongly represented and, using immunofluorescence, we show that it lies within the contractile fibres near the Z-disc as well as on the cardiomyocyte plasma membrane. Electron microscopy of immunogold-labelled cryosections reveals statistically significant clustering of gold particles near the Z-disc, within and close to the edge of myofibrils. betaII-spectrin and ankyrin-R and G are both known to occupy this region. We suggest that alphaIIbetaII spectrin tetramers with ankyrin organise and/or stabilise cardiac muscle cell membrane components relative to the contractile apparatus.


Assuntos
Miócitos Cardíacos/fisiologia , Miofibrilas/fisiologia , Espectrina/fisiologia , Animais , Western Blotting , Membrana Celular/química , Distribuição de Qui-Quadrado , Conectina , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Proteínas Musculares/análise , Miocárdio/química , Miocárdio/citologia , Miócitos Cardíacos/química , Miócitos Cardíacos/citologia , Miofibrilas/química , Músculos Papilares/química , Músculos Papilares/citologia , Músculos Papilares/ultraestrutura , Isoformas de Proteínas/análise , Isoformas de Proteínas/fisiologia , Proteínas Quinases/análise , Espectrina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA