Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011699, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819951

RESUMO

The long slender bloodstream form Trypanosoma brucei maintains its essential mitochondrial membrane potential (ΔΨm) through the proton-pumping activity of the FoF1-ATP synthase operating in the reverse mode. The ATP that drives this hydrolytic reaction has long been thought to be generated by glycolysis and imported from the cytosol via an ATP/ADP carrier (AAC). Indeed, we demonstrate that AAC is the only carrier that can import ATP into the mitochondrial matrix to power the hydrolytic activity of the FoF1-ATP synthase. However, contrary to expectations, the deletion of AAC has no effect on parasite growth, virulence or levels of ΔΨm. This suggests that ATP is produced by substrate-level phosphorylation pathways in the mitochondrion. Therefore, we knocked out the succinyl-CoA synthetase (SCS) gene, a key mitochondrial enzyme that produces ATP through substrate-level phosphorylation in this parasite. Its absence resulted in changes to the metabolic landscape of the parasite, lowered virulence, and reduced mitochondrial ATP content. Strikingly, these SCS mutant parasites become more dependent on AAC as demonstrated by a 25-fold increase in their sensitivity to the AAC inhibitor, carboxyatractyloside. Since the parasites were able to adapt to the loss of SCS in culture, we also analyzed the more immediate phenotypes that manifest when SCS expression is rapidly suppressed by RNAi. Importantly, when performed under nutrient-limited conditions mimicking various host environments, SCS depletion strongly affected parasite growth and levels of ΔΨm. In totality, the data establish that the long slender bloodstream form mitochondrion is capable of generating ATP via substrate-level phosphorylation pathways.


Assuntos
Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Fosforilação , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
2.
PLoS One ; 18(7): e0288067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405993

RESUMO

Bark beetle infestations have historically been primary drivers of stand thinning in Mexican pine forests. However, bark beetle impacts have become increasingly extensive and intense, apparently associated with climate change. Our objective was to describe the possible association between abundance of bark beetle flying populations and the occurrence of given value intervals of temperature, precipitation and their balance, in order to have a better comprehension of the climatic space that might trigger larger insect abundances, an issue relevant in the context of the ongoing climatic change. Here, we monitored the abundance of two of the most important bark beetle species in Mexico, Dendroctonus frontalis and D. mexicanus. We sampled 147 sites using pheromone-baited funnel traps along 24 altitudinal transects in 11 Mexican states, from northwestern Chihuahua to southeastern Chiapas, from 2015 to 2017. Through mixed model analysis, we found that the optimum Mean Annual Temperatures were 17°C-20°C for D. frontalis in low-elevation pine-oak forest, while D. mexicanus had two optimal intervals: 11-13°C and 15-18°C. Higher atmospheric Vapor Pressure Deficit (≥ 1.0) was correlated with higher D. frontalis abundances, indicating that warming-amplified drought stress intensifies trees' vulnerability to beetle attack. As temperatures and drought stress increase further with projected future climatic changes, it is likely that these Dendroctonus species will increase tree damage at higher elevations. Pine forests in Mexico are an important source of livelihood for communities inhabiting those areas, so providing tools to tackle obstacles to forest growth and health posed by changing climate is imperative.


Assuntos
Besouros , Pinus , Gorgulhos , Animais , México , Conservação dos Recursos Naturais , Florestas , Árvores
3.
J Pediatr Pharmacol Ther ; 28(3): 228-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303766

RESUMO

OBJECTIVE: To compare unfractionated heparin (UFH) monitoring using time in therapeutic range of activated partial thromboplastin time (aPTT) versus anti-factor Xa activity (anti-Xa) in children. METHODS: This retrospective chart review, with data between October 2015 and October 2019, included pediatric patients younger than 18 years on therapeutic UFH infusion with aPTT or anti-Xa monitoring. Patients receiving extracorporeal membrane oxygenation, dialysis, concomitant anticoagulants, prophylactic UFH, no stated goal, and UFH administered for less than 12 hours were excluded. The primary outcome compared the percentage of time in therapeutic range between aPTT and anti-Xa. Secondary outcomes included time to first therapeutic value, UFH infusion rates, mean rate adjustments, and adverse events. RESULTS: A total of 65 patients were included, with 33 aPTT patients and 32 anti-Xa patients, representing 39 UFH orders in each group. Baseline characteristics were similar between groups, with an overall mean age of 1.4 years and mean weight of 6.7 kg. The anti-Xa cohort demonstrated a statistically significantly higher percentage of time in therapeutic range compared with the aPTT group (50.3% vs 26.9%, p = 0.002). The anti-Xa group also demonstrated a trend toward decreased time to first therapeutic value compared with aPTT (14 vs 23.2 hours, p = 0.12). Two patients in each group experienced new or worsening thrombosis. Six patients in the aPTT cohort experienced bleeding. CONCLUSIONS: This study demonstrated greater time was spent within therapeutic range for children receiving UFH monitored with anti-Xa compared with aPTT. Future studies should assess clinical outcomes in a larger population.

4.
Pediatr Crit Care Med ; 24(8): e397-e402, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092833

RESUMO

OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) and/or inhaled anesthetics (IAs) are considered in the management of asthma when refractory to conventional therapy. We aimed to compare the outcomes of these two modalities in asthma PICU care and determine associated survival to hospital discharge among patients in a United States database. DESIGN: Retrospective analysis using the Virtual Pediatric Systems (VPS, LLC) database. SETTING: PICUs participating in the VPS database. PATIENTS: Patients less than 18 years old with diagnosis of asthma treated with IA and/or ECMO from January 2010 to December 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 221 patients were included; 149 (67%) received ECMO, 62 (28%) received IA, and 10 (5%) received both interventions. We failed to identify any difference between the ECMO and IA groups in demographics, Pediatric Index of Mortality 2 percentage, Pediatric Risk of Mortality 3 score, Pediatric Logistic Organ Dysfunction score, or pre-intervention pH and Pa co2 levels. Use of ECMO versus IA was associated with lower pre-intervention Pa o2 (60 torr [7.99 kPa] vs 78 torr [10.39 kPa]; p < 0.001) and higher utilization of high-frequency oscillatory ventilation. We failed to identify an association between type of intervention (IA vs ECMO) and greater odds of survival (57/62 [92%] vs 128/149 [86%]; odds ratio [OR], 1.87; 95% CI, 0.67-5.21; p = 0.23). However, these data do not exclude the possibility that IA use is associated with more than five-fold greater odds of survival. ECMO use was associated with longer duration of intervention (5 vs 1.3 d; p < 0.001) and PICU length of stay (LOS) (13 vs 7 d; p < 0.001). As expected, ECMO versus IA was also associated with greater odds of undergoing bronchoscopy (34% vs 11%; OR, 3.7; 95% CI, 1.5-9.4; p = 0.004). CONCLUSIONS: In the VPS database of asthma management cases, we failed to identify an association between ECMO versus IA use and survival to hospital discharge. However, ECMO was associated with longer duration of intervention and PICU LOS.


Assuntos
Asma , Oxigenação por Membrana Extracorpórea , Criança , Humanos , Adolescente , Estudos Retrospectivos , Resultado do Tratamento , Fatores de Tempo , Asma/terapia
5.
PeerJ ; 10: e13812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35942126

RESUMO

Background: In the projected climate change scenarios, assisted migration might play an important role in the ex situ conservation of the threatened plant species, by translocate them to similar suitable habitats outside their native distributions. However, it is unclear if such habitats will be available for the Rare Endemic Plant Species (REPS), because of their very restricted habitats. The aims of this study were to perform a population size assessment for the REPS Picea martinezii Patterson and Picea mexicana Martínez, and to evaluate the potential species distributions and their possibilities for assisted migration inside México and worldwide. Methods: We performed demographic censuses, field surveys in search for new stands, and developed distribution models for Last Glacial Maximum (22,000 years ago), Middle Holocene (6,000 years ago), current (1961-1990) and future (2050 and 2070) periods, for the whole Mexican territory (considering climatic, soil, geologic and topographic variables) and for all global land areas (based only on climate). Results: Our censuses showed populations of 89,266 and 39,059 individuals for P. martinezii and P. mexicana, respectively, including known populations and new stands. Projections for México indicated somewhat larger suitable areas in the past, now restricted to the known populations and new stands, where they will disappear by 2050 in a pessimistic climatic scenario, and scarce marginal areas (p = 0.5-0.79) remaining only for P. martinezii by 2070. Worldwide projections (based only on climate variables) revealed few marginal areas in 2050 only in México for P. martinezii, and several large areas (p ≥ 0.5) for P. mexicana around the world (all outside México), especially on the Himalayas in India and the Chungyang mountains in Taiwan with highly suitable (p ≥ 0.8) climate habitats in current and future (2050) conditions. However, those suitable areas are currently inhabited by other endemic spruces: Picea smithiana (Wall.) Boiss and Picea morrisonicola Hayata, respectively. Conclusions: Assisted migration would only be an option for P. martinezii on scarce marginal sites in México, and the possibilities for P. mexicana would be continental and transcontinental translocations. This rises two possible issues for future ex situ conservation programs: the first is related to whether or not consider assisted migration to marginal sites which do not cover the main habitat requirements for the species; the second is related to which species (the local or the foreign) should be prioritized for conservation when suitable habitat is found elsewhere but is inhabited by other endemic species. This highlights the necessity to discuss new policies, guidelines and mechanisms of international cooperation to deal with the expected high species extinction rates, linked to projected climate change.


Assuntos
Picea , Mudança Climática , Ecossistema , Espécies em Perigo de Extinção , México , Plantas
7.
PLoS Biol ; 19(8): e3001359, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34388147

RESUMO

Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.


Assuntos
Glicerol Quinase/metabolismo , Glicerol/metabolismo , Hexoquinase/metabolismo , Microcorpos/enzimologia , Trypanosoma brucei brucei/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular
8.
mBio ; 12(3): e0037521, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34044588

RESUMO

Glycosomes are peroxisome-related organelles of trypanosomatid parasites containing metabolic pathways, such as glycolysis and biosynthesis of sugar nucleotides, usually present in the cytosol of other eukaryotes. UDP-glucose pyrophosphorylase (UGP), the enzyme responsible for the synthesis of the sugar nucleotide UDP-glucose, is localized in the cytosol and glycosomes of the bloodstream and procyclic trypanosomes, despite the absence of any known peroxisome-targeting signal (PTS1 and PTS2). The questions that we address here are (i) is the unusual glycosomal biosynthetic pathway of sugar nucleotides functional and (ii) how is the PTS-free UGP imported into glycosomes? We showed that UGP is imported into glycosomes by piggybacking on the glycosomal PTS1-containing phosphoenolpyruvate carboxykinase (PEPCK) and identified the domains involved in the UGP/PEPCK interaction. Proximity ligation assays revealed that this interaction occurs in 3 to 10% of glycosomes, suggesting that these correspond to organelles competent for protein import. We also showed that UGP is essential for the growth of trypanosomes and that both the glycosomal and cytosolic metabolic pathways involving UGP are functional, since the lethality of the knockdown UGP mutant cell line (RNAiUGP, where RNAi indicates RNA interference) was rescued by expressing a recoded UGP (rUGP) in the organelle (RNAiUGP/EXPrUGP-GPDH, where GPDH is glycerol-3-phosphate dehydrogenase). Our conclusion was supported by targeted metabolomic analyses (ion chromatography-high-resolution mass spectrometry [IC-HRMS]) showing that UDP-glucose is no longer detectable in the RNAiUGP mutant, while it is still produced in cells expressing UGP exclusively in the cytosol (PEPCK null mutant) or glycosomes (RNAiUGP/EXPrUGP-GPDH). Trypanosomatids are the only known organisms to have selected functional peroxisomal (glycosomal) sugar nucleotide biosynthetic pathways in addition to the canonical cytosolic ones. IMPORTANCE Unusual compartmentalization of metabolic pathways within organelles is one of the most enigmatic features of trypanosomatids. These unicellular eukaryotes are the only organisms that sequestered glycolysis inside peroxisomes (glycosomes), although the selective advantage of this compartmentalization is still not clear. Trypanosomatids are also unique for the glycosomal localization of enzymes of the sugar nucleotide biosynthetic pathways, which are also present in the cytosol. Here, we showed that the cytosolic and glycosomal pathways are functional. As in all other eukaryotes, the cytosolic pathways feed glycosylation reactions; however, the role of the duplicated glycosomal pathways is currently unknown. We also showed that one of these enzymes (UGP) is imported into glycosomes by piggybacking on another glycosomal enzyme (PEPCK); they are not functionally related. The UGP/PEPCK association is unique since all piggybacking examples reported to date involve functionally related interacting partners, which broadens the possible combinations of carrier-cargo proteins being imported as hetero-oligomers.


Assuntos
Microcorpos/metabolismo , Nucleotídeos/metabolismo , Açúcares/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Citosol/metabolismo , Redes e Vias Metabólicas , Nucleotídeos/biossíntese , Transporte Proteico , Trypanosoma brucei brucei/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética
9.
Exp Parasitol ; 224: 108102, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33775649

RESUMO

The human pathogenic trypanosomatid species collectively called the "TriTryp parasites" - Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. - have complex life cycles, with each of these parasitic protists residing in a different niche during their successive developmental stages where they encounter diverse nutrients. Consequently, they adapt their metabolic network accordingly. Yet, throughout the life cycles, carbohydrate metabolism - involving the glycolytic, gluconeogenic and pentose-phosphate pathways - always plays a central role in the biology of these parasites, whether the available carbon and free energy sources are saccharides, amino acids or lipids. In this paper, we provide an updated review of the carbohydrate metabolism of the TriTryps, highlighting new data about this metabolic network, the interconnection of its pathways and the compartmentalisation of its enzymes within glycosomes, cytosol and mitochondrion. Differences in the expression of the branches of the metabolic network between the successive life-cycle stages of each of these parasitic trypanosomatids are discussed, as well as differences between them. Recent structural and kinetic studies have revealed unique regulatory mechanisms for some of the network's key enzymes with important species-specific variations. Furthermore, reports of multiple post-translational modifications of trypanosomal glycolytic enzymes suggest that additional mechanisms for stage- and/or environmental cues that regulate activity are operational in the parasites. The detailed comparison of the carbohydrate metabolism of the TriTryps has thus revealed multiple differences and a greater complexity, including for the reduced metabolic network in bloodstream-form T. brucei, than previously appreciated. Although these parasites are related, share many cytological and metabolic features and are grouped within a single taxonomic family, the differences highlighted in this review reflect their separate evolutionary tracks from a common ancestor to the extant organisms. These differences are indicative of their adaptation to the different insect vectors and niches occupied in their mammalian hosts.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Trypanosomatina/metabolismo , Metabolismo Energético , Galactose/metabolismo , Gluconeogênese/fisiologia , Glicólise/fisiologia , Trypanosomatina/enzimologia
10.
PLoS Pathog ; 17(3): e1009204, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33647053

RESUMO

Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.


Assuntos
Glucose/metabolismo , Prolina/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma/efeitos dos fármacos , Moscas Tsé-Tsé/efeitos dos fármacos , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Insetos Vetores/parasitologia , Oxirredução/efeitos dos fármacos , Prolina/metabolismo , Interferência de RNA/fisiologia , Trypanosoma/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Moscas Tsé-Tsé/parasitologia
11.
Ecol Appl ; 30(2): e02041, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758621

RESUMO

The high biodiversity of the Mexican montane forests is concentrated on the Trans-Mexican Volcanic Belt, where several Protected Natural Areas exist. Our study examines the projected changes in suitable climatic habitat for five conifer species that dominate these forests. The species are distributed sequentially in overlapping altitudinal bands: Pinus hartwegii at the upper timberline, followed by Abies religiosa, the overwintering host of the Monarch butterfly at the Monarch Butterfly Biosphere Reserve, P. pseudostrobus, the most important in economic terms, and P. devoniana and P. oocarpa, which are important for resin production and occupy low altitudes where montane conifers merge with tropical dry forests. We fit a bioclimatic model to presence-absence observations for each species using the Random Forests classification tree with ground plot data. The models are driven by normal climatic variables from 1961 to 1990, which represents the reference period for climate-induced vegetation changes. Climate data from an ensemble of 17 general circulation models were run through the classification tree to project current distributions under climates described by the RCP 6.0 watts/m2 scenario for the decades centered on years 2030, 2060 and 2090. The results suggest that, by 2060, the climate niche of each species will occur at elevations that are between 300 to 500 m higher than at present. By 2060, habitat loss could amount to 46-77%, mostly affecting the lower limits of distribution. The two species at the highest elevation, P. hartwegii and A. religiosa, would suffer the greatest losses while, at the lower elevations, P. oocarpa would gain the most niche space. Our results suggest that conifers will require human assistance to migrate altitudinally upward in order to recouple populations with the climates to which they are adapted. Traditional in situ conservation measures are likely to be equivalent to inaction and will therefore be incapable of maintaining current forest compositions.


Assuntos
Traqueófitas , Biodiversidade , Mudança Climática , Ecossistema , México
12.
Transpl Infect Dis ; 21(5): e13160, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31419347

RESUMO

Immunization rates in pre-liver transplant patients have been historically below rates for immunocompetent patients. At Cleveland Clinic, an infectious diseases (ID) consult is required for all patients during the liver transplant evaluation and may beneficially impact vaccination rates. The goal of this study was to evaluate pre-transplant vaccination rates in pre-liver transplant candidates. This single-center, retrospective chart review included adults transplanted between January 1, 2013, and December 31, 2016. Prior to transplant, rates of vaccination and/or documented seropositivity were 35% for hepatitis B vaccine, 92% for hepatitis A vaccine, 57% for pneumococcal conjugate vaccine, 62% for pneumococcal polysaccharide vaccine, and 77% for influenza vaccine. Vaccination rates were higher than to previously reported. Rates were also higher for several vaccines compared to transplant candidates for other organs without ID consult. With ongoing ID consult requirements for liver transplant candidates, combined with standardization of vaccine recommendations via technology, and increased multi-disciplinary collaboration, vaccination rates should improve further.


Assuntos
Transplante de Fígado , Transplantados , Vacinação/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encaminhamento e Consulta , Estudos Retrospectivos , Vacinas/administração & dosagem
13.
Pharmacotherapy ; 39(7): 741-748, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31102482

RESUMO

STUDY OBJECTIVE: Newly diagnosed pediatric patients with type 1 diabetes mellitus (T1D) can be underweight, overweight, or normal weight at presentation. Study objectives were to determine if, across weight categories, admission body weight (ABW)-based initial insulin glargine dosing resulted in similar fasting blood glucose responses on day of discharge, how initial ABW-based doses differed from doses at outpatient follow-up, and whether an ideal body weight (IBW) would provide a better estimate of body weight after discharge. DESIGN: Retrospective chart review. SETTING: Urban tertiary academic medical center. PATIENTS: Eighty-one pediatric patients newly diagnosed with T1D who started therapy with subcutaneous insulin glargine between October 2014 and October 2016; patients were categorized by weight using body mass index (BMI) percentiles (underweight, normal weight, or overweight/obese). MEASUREMENTS AND MAIN RESULTS: Data on patient parameters from hospitalization to outpatient physician follow-up were collected. The McLaren, Moore, and BMI IBW methods were used to calculate IBW for each patient; these IBWs were compared with weights at outpatient follow-up. Initial insulin glargine doses were similar among all weight groups: median (range) 0.299 (0.227-0.4), 0.297 (0.204-0.421), and 0.291 (0.194-0.394) units/kg/dose, respectively, for the underweight, normal weight, and overweight/obese groups. No significant differences in discharge fasting glucose level or insulin glargine dose change from admission to first outpatient follow-up visit were noted. Underweight patients gained significantly more weight within 60 days after discharge compared with normal and overweight/obese patients, (median 16.3% vs 7.7% and 5.7%, respectively; p=0.002), aligning closest with the McLaren IBW. ABW was the best estimate of weight at outpatient follow-up in the overweight/obese patient group. CONCLUSION: For children who presented underweight, the McLaren IBW method was the best predictor of outpatient dose and body weight, whereas ABW was the best estimate in overweight and obese patients. Further investigation of the role of IBW- or ABW-based dosing methods in underweight pediatric patients with T1D may assist in optimal dosing.


Assuntos
Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina Glargina/administração & dosagem , Sobrepeso , Magreza , Centros Médicos Acadêmicos , Adolescente , Glicemia/análise , Índice de Massa Corporal , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Insulina Glargina/uso terapêutico , Masculino , Prontuários Médicos , Sobrepeso/sangue , Estudos Retrospectivos , Magreza/sangue
14.
PLoS Pathog ; 14(11): e1007412, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383867

RESUMO

The bloodstream forms of Trypanosoma brucei (BSF), the parasite protist causing sleeping sickness, primarily proliferate in the blood of their mammalian hosts. The skin and adipose tissues were recently identified as additional major sites for parasite development. Glucose was the only carbon source known to be used by bloodstream trypanosomes to feed their central carbon metabolism, however, the metabolic behaviour of extravascular tissue-adapted parasites has not been addressed yet. Since the production of glycerol is an important primary function of adipocytes, we have adapted BSF trypanosomes to a glucose-depleted but glycerol-rich culture medium (CMM_Glyc/GlcNAc) and compared their metabolism and proteome to those of parasites grown in standard glucose-rich conditions (CMM_Glc). BSF were shown to consume 2-folds more oxygen per consumed carbon unit in CMM_Glyc/GlcNAc and were 11.5-times more sensitive to SHAM, a specific inhibitor of the plant-like alternative oxidase (TAO), which is the only mitochondrial terminal oxidase expressed in BSF. This is consistent with (i) the absolute requirement of the mitochondrial respiratory activity to convert glycerol into dihydroxyacetone phosphate, as deduced from the updated metabolic scheme and (ii) with the 1.8-fold increase of the TAO expression level compared to the presence of glucose. Proton NMR analysis of excreted end products from glycerol and glucose metabolism showed that these two carbon sources are metabolised through the same pathways, although the contributions of the acetate and succinate branches are more important in the presence of glycerol than glucose (10.2% versus 3.4% of the excreted end products, respectively). In addition, metabolomic analyses by mass spectrometry showed that, in the absence of glucose, 13C-labelled glycerol was incorporated into hexose phosphates through gluconeogenesis. As expected, RNAi-mediated down-regulation of glycerol kinase expression abolished glycerol metabolism and was lethal for BSF grown in CMM_Glyc/GlcNAc. Interestingly, BSF have adapted their metabolism to grow in CMM_Glyc/GlcNAc by concomitantly increasing their rate of glycerol consumption and decreasing that of glucose. However, the glycerol kinase activity was 7.8-fold lower in CMM_Glyc/GlcNAc, as confirmed by both western blotting and proteomic analyses. This suggests that the huge excess in glycerol kinase that is not absolutely required for glycerol metabolism, might be used for another yet undetermined non-essential function in glucose rich-conditions. Altogether, these data demonstrate that BSF trypanosomes are well-adapted to glycerol-rich conditions that could be encountered by the parasite in extravascular niches, such as the skin and adipose tissues.


Assuntos
Glicerol/metabolismo , Trypanosoma brucei brucei/metabolismo , Tecido Adiposo/metabolismo , Linhagem Celular/metabolismo , Meios de Cultura/química , Gluconeogênese , Glucose/metabolismo , Glicólise , Metabolômica , Mitocôndrias/metabolismo , Ácido Succínico/metabolismo , Espectrometria de Massas em Tandem/métodos , Trypanosoma brucei brucei/patogenicidade
15.
Cells ; 6(4)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160807

RESUMO

Entamoeba histolytica is the causative agent of human amoebiasis; it affects 50 million people worldwide and causes approximately 100,000 deaths per year. Entamoeba histolytica is an anaerobic parasite that is primarily found in the colon; however, for unknown reasons, it can become invasive, breaching the gut barrier and migrating toward the liver causing amoebic liver abscesses. During the invasive process, it must maintain intracellular hypoxia within the oxygenated human tissues and cellular homeostasis during the host immune defense attack when it is confronted with nitric oxide and reactive oxygen species. But how? This review will address the described and potential mechanisms available to counter the oxidative stress generated during invasion and the possible role that E. histolytica's continuous endoplasmic reticulum (Eh-ER) plays during these events.

16.
Biochim Biophys Acta ; 1860(6): 1163-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922831

RESUMO

BACKGROUND: Acetate is an end-product of the PPi-dependent fermentative glycolysis in Entamoeba histolytica; it is synthesized from acetyl-CoA by ADP-forming acetyl-CoA synthetase (ACS) with net ATP synthesis or from acetyl-phosphate by a unique PPi-forming acetate kinase (AcK). The relevance of these enzymes to the parasite ATP and PPi supply, respectively, are analyzed here. METHODS: The recombinant enzymes were kinetically characterized and their physiological roles were analyzed by transcriptional gene silencing and further metabolic analyses in amoebae. RESULTS: Recombinant ACS showed higher catalytic efficiencies (Vmax/Km) for acetate formation than for acetyl-CoA formation and high acetyl-CoA levels were found in trophozoites. Gradual ACS gene silencing (49-93%) significantly decreased the acetate flux without affecting the levels of glycolytic metabolites and ATP in trophozoites. However, amoebae lacking ACS activity were unable to reestablish the acetyl-CoA/CoA ratio after an oxidative stress challenge. Recombinant AcK showed activity only in the acetate formation direction; however, its substrate acetyl-phosphate was undetected in axenic parasites. AcK gene silencing did not affect acetate production in the parasites but promoted a slight decrease (10-20%) in the hexose phosphates and PPi levels. CONCLUSIONS: These results indicated that the main role of ACS in the parasite energy metabolism is not ATP production but to recycle CoA for glycolysis to proceed under aerobic conditions. AcK does not contribute to acetate production but might be marginally involved in PPi and hexosephosphate homeostasis. SIGNIFICANCE: The previous, long-standing hypothesis that these enzymes importantly contribute to ATP and PPi supply in amoebae can now be ruled out.


Assuntos
Acetato Quinase/fisiologia , Acetato-CoA Ligase/fisiologia , Difosfatos/metabolismo , Entamoeba histolytica/metabolismo , Acetato Quinase/genética , Acetato-CoA Ligase/genética , Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Etanol/metabolismo , Glicólise
17.
FEBS J ; 283(10): 1979-99, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27000496

RESUMO

Gluconeogenesis is an essential pathway in methanogens because they are unable to use exogenous hexoses as carbon source for cell growth. With the aim of understanding the regulatory mechanisms of central carbon metabolism in Methanosarcina acetivorans, the present study investigated gene expression, the activities and metabolic regulation of key enzymes, metabolite contents and fluxes of gluconeogenesis, as well as glycolysis and glycogen synthesis/degradation pathways. Cells were grown with methanol as a carbon source. Key enzymes were kinetically characterized at physiological pH/temperature. Active consumption of methanol during exponential cell growth correlated with significant methanogenesis, gluconeogenic flux and steady glycogen synthesis. After methanol exhaustion, cells reached the stationary growth phase, which correlated with the rise in glycogen consumption and glycolytic flux, decreased methanogenesis, negligible acetate production and an absence of gluconeogenesis. Elevated activities of carbon monoxide dehydrogenase/acetyl-CoA synthetase complex and pyruvate: ferredoxin oxidoreductase suggested the generation of acetyl-CoA and pyruvate for glycogen synthesis. In the early stationary growth phase, the transcript contents and activities of pyruvate phosphate dikinase, fructose 1,6-bisphosphatase and glycogen synthase decreased, whereas those of glycogen phosphorylase, ADP-phosphofructokinase and pyruvate kinase increased. Therefore, glycogen and gluconeogenic metabolites were synthesized when an external carbon source was provided. Once such a carbon source became depleted, glycolysis and methanogenesis fed by glycogen degradation provided the ATP supply. Weak inhibition of key enzymes by metabolites suggested that the pathways evaluated were mainly transcriptionally regulated. Because glycogen metabolism and glycolysis/gluconeogenesis are not present in all methanogens, the overall data suggest that glycogen storage might represent an environmental advantage for methanosarcinales when carbon sources are scarce. Also, the understanding of the central carbohydrate metabolism in methanosarcinales may help to optimize methane production.


Assuntos
Gluconeogênese , Glicogênio/metabolismo , Glicólise , Methanosarcina/metabolismo , Estado Nutricional
18.
Biochim Biophys Acta ; 1853(12): 3266-78, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434996

RESUMO

The role of p53 as modulator of OxPhos and glycolysis was analyzed in HeLa-L (cells containing negligible p53 protein levels) and HeLa-H (p53-overexpressing) human cervix cancer cells under normoxia and hypoxia. In normoxia, functional p53, mitochondrial enzyme contents, mitochondrial electrical potential (ΔΨm) and OxPhos flux increased in HeLa-H vs. HeLa-L cells; whereas their glycolytic enzyme contents and glycolysis flux were unchanged. OxPhos provided more than 70% of the cellular ATP and proliferation was abolished by anti-mitochondrial drugs in HeLa-H cells. In hypoxia, both cell proliferations were suppressed, but HeLa-H cells exhibited a significant decrease in OxPhos protein contents, ΔΨm and OxPhos flux. Although glycolytic function was also diminished vs. HeLa-L cells in hypoxia, glycolysis provided more than 60% of cellular ATP in HeLa-H cells. The energy metabolism phenotype of HeLa-H cells was reverted to that of HeLa-L cells by incubating with pifithrin-α, a p53-inhibitor. In normoxia, the energy metabolism phenotype of breast cancer MCF-7 cells was similar to that of HeLa-H cells, whereas p53shRNAMCF-7 cells resembled the HeLa-L cell phenotype. In hypoxia, autophagy proteins and lysosomes contents increased 2-5 times in HeLa-H cells suggesting mitophagy activation. These results indicated that under normoxia p53 up-regulated OxPhos without affecting glycolysis, whereas under hypoxia, p53 down-regulated both OxPhos (severely) and glycolysis (weakly). These p53 effects appeared mediated by the formation of p53-HIF-1α complexes. Therefore, p53 exerts a dual and contrasting regulatory role on cancer energy metabolism, depending on the O2level.


Assuntos
Neoplasias da Mama/metabolismo , Metabolismo Energético , Proteína Supressora de Tumor p53/fisiologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias da Mama/patologia , Divisão Celular , Hipóxia Celular , Feminino , Células HeLa , Humanos , Células MCF-7 , Neoplasias do Colo do Útero/patologia
19.
J Hazard Mater ; 288: 104-12, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25698571

RESUMO

The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O2, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O2 concentration is particularly low.


Assuntos
Cádmio/metabolismo , Euglena gracilis/metabolismo , Anaerobiose , Biodegradação Ambiental , Biomassa , Reatores Biológicos , Cádmio/farmacologia , Carbono/metabolismo , Meios de Cultura , Euglena gracilis/efeitos dos fármacos , Euglena gracilis/crescimento & desenvolvimento , Glicólise , Cinética , Fotossíntese
20.
PLoS One ; 10(2): e0117331, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706146

RESUMO

Methanosarcina acetivorans, considered a strict anaerobic archaeon, was cultured in the presence of 0.4-1% O2 (atmospheric) for at least 6 months to generate air-adapted cells; further, the biochemical mechanisms developed to deal with O2 were characterized. Methane production and protein content, as indicators of cell growth, did not change in air-adapted cells respect to cells cultured under anoxia (control cells). In contrast, growth and methane production significantly decreased in control cells exposed for the first time to O2. Production of reactive oxygen species was 50 times lower in air-adapted cells versus control cells, suggesting enhanced anti-oxidant mechanisms that attenuated the O2 toxicity. In this regard, (i) the transcripts and activities of superoxide dismutase, catalase and peroxidase significantly increased; and (ii) the thiol-molecules (cysteine + coenzyme M-SH + sulfide) and polyphosphate contents were respectively 2 and 5 times higher in air-adapted cells versus anaerobic-control cells. Long-term cultures (18 days) of air-adapted cells exposed to 2% O2 exhibited the ability to form biofilms. These data indicate that M. acetivorans develops multiple mechanisms to contend with O2 and the associated oxidative stress, as also suggested by genome analyses for some methanogens.


Assuntos
Metano/biossíntese , Methanosarcina/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Ar , Genoma Microbiano , Metano/metabolismo , Methanosarcina/genética , Methanosarcina/crescimento & desenvolvimento , Peroxidase/genética , Polifosfatos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...