Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Genet ; 8: 113, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919908

RESUMO

The inactivation of ribosomal protein S6 kinase 1 (S6K1) recapitulates aspects of caloric restriction and mTORC1 inhibition to achieve prolonged longevity in invertebrate and mouse models. In addition to delaying normative aging, inhibition of mTORC1 extends the shortened lifespan of yeast, fly, and mouse models with severe mitochondrial disease. Here we tested whether disruption of S6K1 can recapitulate the beneficial effects of mTORC1 inhibition in the Ndufs4 knockout (NKO) mouse model of Leigh Syndrome caused by Complex I deficiency. These NKO mice develop profound neurodegeneration resulting in brain lesions and death around 50-60 days of age. Our results show that liver-specific, as well as whole body, S6K1 deletion modestly prolongs survival and delays onset of neurological symptoms in NKO mice. In contrast, we observed no survival benefit in NKO mice specifically disrupted for S6K1 in neurons or adipocytes. Body weight was reduced in WT mice upon disruption of S6K1 in adipocytes or whole body, but not altered when S6K1 was disrupted only in neurons or liver. Taken together, these data indicate that decreased S6K1 activity in liver is sufficient to delay the neurological and survival defects caused by deficiency of Complex I and suggest that mTOR signaling can modulate mitochondrial disease and metabolism via cell non-autonomous mechanisms.

3.
Elife ; 52016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549339

RESUMO

The FDA approved drug rapamycin increases lifespan in rodents and delays age-related dysfunction in rodents and humans. Nevertheless, important questions remain regarding the optimal dose, duration, and mechanisms of action in the context of healthy aging. Here we show that 3 months of rapamycin treatment is sufficient to increase life expectancy by up to 60% and improve measures of healthspan in middle-aged mice. This transient treatment is also associated with a remodeling of the microbiome, including dramatically increased prevalence of segmented filamentous bacteria in the small intestine. We also define a dose in female mice that does not extend lifespan, but is associated with a striking shift in cancer prevalence toward aggressive hematopoietic cancers and away from non-hematopoietic malignancies. These data suggest that a short-term rapamycin treatment late in life has persistent effects that can robustly delay aging, influence cancer prevalence, and modulate the microbiome.


Assuntos
Antibacterianos/administração & dosagem , Antibióticos Antineoplásicos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Neoplasias/prevenção & controle , Sirolimo/administração & dosagem , Animais , Camundongos
4.
Nat Med ; 22(1): 37-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26642438

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which encodes a polyglutamine tract in the HTT protein. We found that peroxisome proliferator-activated receptor delta (PPAR-δ) interacts with HTT and that mutant HTT represses PPAR-δ-mediated transactivation. Increased PPAR-δ transactivation ameliorated mitochondrial dysfunction and improved cell survival of neurons from mouse models of HD. Expression of dominant-negative PPAR-δ in the central nervous system of mice was sufficient to induce motor dysfunction, neurodegeneration, mitochondrial abnormalities and transcriptional alterations that recapitulated HD-like phenotypes. Expression of dominant-negative PPAR-δ specifically in the striatum of medium spiny neurons in mice yielded HD-like motor phenotypes, accompanied by striatal neuron loss. In mouse models of HD, pharmacologic activation of PPAR-δ using the agonist KD3010 improved motor function, reduced neurodegeneration and increased survival. PPAR-δ activation also reduced HTT-induced neurotoxicity in vitro and in medium spiny-like neurons generated from stem cells derived from individuals with HD, indicating that PPAR-δ activation may be beneficial in HD and related disorders.


Assuntos
Doença de Huntington/genética , Neostriado/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Animais , Morte Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Movimento/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , PPAR delta/genética , PPAR delta/metabolismo , Piperazinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Citoplasmáticos e Nucleares/agonistas , Sulfonamidas/farmacologia
5.
Nat Commun ; 5: 3483, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24662282

RESUMO

Recent studies have propagated the model that the mitochondrial unfolded protein response (UPR(mt)) is causal for lifespan extension from inhibition of the electron transport chain (ETC) in Caenorhabditis elegans. Here we report a genome-wide RNAi screen for negative regulators of the UPR(mt). Lifespan analysis of nineteen RNAi clones that induce the hsp-6p::gfp reporter demonstrate differential effects on longevity. Deletion of atfs-1, which is required for induction of the UPR(mt), fails to prevent lifespan extension from knockdown of two genes identified in our screen or following knockdown of the ETC gene cco-1. RNAi knockdown of atfs-1 also has no effect on lifespan extension caused by mutation of the ETC gene isp-1. Constitutive activation of the UPR(mt) by gain of function mutations in atfs-1 fails to extend lifespan. These observations identify several new factors that promote mitochondrial homoeostasis and demonstrate that the UPR(mt), as currently defined, is neither necessary nor sufficient for lifespan extension.


Assuntos
Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
6.
Neuron ; 70(6): 1071-84, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21689595

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder caused by CAG/polyglutamine repeat expansions in the ataxin-7 gene. Ataxin-7 is a component of two different transcription coactivator complexes, and recent work indicates that disease protein normal function is altered in polyglutamine neurodegeneration. Given this, we studied how ataxin-7 gene expression is regulated. The ataxin-7 repeat and translation start site are flanked by binding sites for CTCF, a highly conserved multifunctional transcription regulator. When we analyzed this region, we discovered an adjacent alternative promoter and a convergently transcribed antisense noncoding RNA, SCAANT1. To understand how CTCF regulates ataxin-7 gene expression, we introduced ataxin-7 mini-genes into mice, and found that CTCF is required for SCAANT1 expression. Loss of SCAANT1 derepressed ataxin-7 sense transcription in a cis-dependent fashion and was accompanied by chromatin remodeling. Discovery of this pathway underscores the importance of altered epigenetic regulation for disease pathology at repeat loci exhibiting bidirectional transcription.


Assuntos
Mapeamento Cromossômico , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , RNA Antissenso/metabolismo , Proteínas Repressoras/metabolismo , Animais , Ataxina-7 , Fator de Ligação a CCCTC , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , RNA não Traduzido/metabolismo , Proteínas Repressoras/genética , Células Tumorais Cultivadas
7.
PLoS Genet ; 4(11): e1000257, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19008940

RESUMO

At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting "instability elements," and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF -- a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Instabilidade Genômica , Mutação , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos , Animais , Ataxina-7 , Sítios de Ligação , Fator de Ligação a CCCTC , Metilação de DNA , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/genética
8.
Cell Metab ; 4(5): 349-62, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17055784

RESUMO

Huntington's disease (HD) is a fatal, dominantly inherited disorder caused by polyglutamine repeat expansion in the huntingtin (htt) gene. Here, we observe that HD mice develop hypothermia associated with impaired activation of brown adipose tissue (BAT). Although sympathetic stimulation of PPARgamma coactivator 1alpha (PGC-1alpha) was intact in BAT of HD mice, uncoupling protein 1 (UCP-1) induction was blunted. In cultured cells, expression of mutant htt suppressed UCP-1 promoter activity; this was reversed by PGC-1alpha expression. HD mice showed reduced food intake and increased energy expenditure, with dysfunctional BAT mitochondria. PGC-1alpha is a known regulator of mitochondrial function; here, we document reduced expression of PGC-1alpha target genes in HD patient and mouse striatum. Mitochondria of HD mouse brain show reduced oxygen consumption rates. Finally, HD striatal neurons expressing exogenous PGC-1alpha were resistant to 3-nitropropionic acid treatment. Altered PGC-1alpha function may thus link transcription dysregulation and mitochondrial dysfunction in HD.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Regulação da Temperatura Corporal/genética , Proteínas de Choque Térmico/metabolismo , Doença de Huntington/etiologia , Fatores de Transcrição/metabolismo , Animais , Temperatura Corporal/genética , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Choque Térmico/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica
9.
J Neurosci ; 25(16): 4118-26, 2005 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15843614

RESUMO

The importance of the cAMP signaling pathway in the modulation of ethanol sensitivity has been suggested by studies in organisms from Drosophila melanogaster to man. However, the involvement of specific isoforms of adenylyl cyclase (AC), the molecule that converts ATP to cAMP, has not been systemically determined in vivo. Because AC1 and AC8 are the only AC isoforms stimulated by calcium, and ethanol modulates calcium flux by the NMDA receptor, we hypothesized that these ACs would be important in the neural response to ethanol. AC1 knock-out (KO) mice and double knock-out (DKO) mice with genetic deletion of both AC1 and AC8 display substantially increased sensitivity to ethanol-induced sedation compared with wild-type (WT) mice, whereas AC8 KO mice are only minimally more sensitive. In contrast, AC8 KO and DKO mice, but not AC1 KO mice, demonstrate decreased voluntary ethanol consumption compared with WT mice. DKO mice do not display increased sleep time compared with WT mice after administration of ketamine or pentobarbital, indicating that the mechanism of enhanced ethanol sensitivity in these mice is likely distinct from the antagonism of ethanol of the NMDA receptor and potentiation of the GABA(A) receptor. Ethanol does not enhance calcium-stimulated AC activity, but the ethanol-induced phosphorylation of a discrete subset of protein kinase A (PKA) substrates is compromised in the brains of DKO mice. These results indicate that the unique activation of PKA signaling mediated by the calcium-stimulated ACs is an important component of the neuronal response to ethanol.


Assuntos
Adenilil Ciclases/metabolismo , Cálcio/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Neurônios/efeitos dos fármacos , Adenilil Ciclases/deficiência , Análise de Variância , Animais , Ataxia/fisiopatologia , Comportamento Animal , Western Blotting/métodos , Depressores do Sistema Nervoso Central/sangue , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Etanol/sangue , Antagonistas de Aminoácidos Excitatórios/farmacologia , Preferências Alimentares/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Isoxazóis/farmacologia , Ketamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Pentobarbital/farmacologia , Fosforilação/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Quinina/farmacologia , Tempo de Reação/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Sacarina/farmacologia , Sono/efeitos dos fármacos , Sono/genética
10.
Nat Neurosci ; 7(6): 635-42, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15133516

RESUMO

Cyclic AMP is a positive regulator of synaptic plasticity and is required for several forms of hippocampus-dependent memory including recognition memory. The type I adenylyl cyclase, Adcy1 (also known as AC1), is crucial in memory formation because it couples Ca(2+) to cyclic AMP increases in the hippocampus. Because Adcy1 is neurospecific, it is a potential pharmacological target for increasing cAMP specifically in the brain and for improving memory. We have generated transgenic mice that overexpress Adcy1 in the forebrain using the Camk2a (also known as alpha-CaMKII) promoter. These mice showed elevated long-term potentiation (LTP), increased memory for object recognition and slower rates of extinction for contextual memory. The increase in recognition memory and lower rates of contextual memory extinction may be due to enhanced extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling, which is elevated in mice that overexpress Adcy1.


Assuntos
Adenilil Ciclases/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Potenciação de Longa Duração , Prosencéfalo/metabolismo , Reconhecimento Psicológico/fisiologia , Adenilil Ciclases/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/biossíntese , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Linhagem Celular , Humanos , Potenciação de Longa Duração/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas
11.
Neuron ; 41(1): 153-63, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-14715142

RESUMO

Stimulation of adenylyl cyclase in the hippocampus is critical for memory formation. However, generation of cAMP signals within an optimal range for memory may require a balance between stimulatory and inhibitory mechanisms. The role of adenylyl cyclase inhibitory mechanisms for memory has not been addressed. One of the mechanisms for inhibition of adenylyl cyclase is through activation of G(i)-coupled receptors, a mechanism that could serve as a constraint on memory formation. Here we report that ablation of G(ialpha1) by gene disruption increases hippocampal adenylyl cyclase activity and enhances LTP in area CA1. Furthermore, gene ablation of G(ialpha1) or antisense oligonucleotide-mediated depletion of G(ialpha1) disrupted hippocampus-dependent memory. We conclude that G(ialpha1) provides a critical mechanism for tonic inhibition of adenylyl cyclase activity in the hippocampus. We hypothesize that loss of G(ialpha1) amplifies the responsiveness of CA1 postsynaptic neurons to stimuli that strengthen synaptic efficacy, thereby diminishing synapse-specific plasticity required for new memory formation.


Assuntos
Adenilil Ciclases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Hipocampo/enzimologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Deleção de Genes , Hipocampo/fisiologia , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Toxina Pertussis/farmacologia
12.
J Neurosci ; 23(30): 9710-8, 2003 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-14585998

RESUMO

Mossy fiber/CA3 long-term potentiation (LTP) is hypothesized to depend on cAMP signals generated by Ca2+-stimulated adenylyl cyclases AC1 or AC8. AC1 gene knock-out mice (AC1-/-) show a partial reduction in mossy fiber LTP, suggesting that either AC8 activity is also critical for mossy fiber LTP or that there is a component of mossy fiber LTP that is independent of CaM-activated adenylyl cyclases. To address this issue, mossy fiber LTP was examined in hippocampal slices from AC8-/- and AC1-/- x AC8-/- double knock-out mice (DKO). Despite the fact that AC8 contributes only a small fraction of the Ca2+-stimulated adenylyl cyclase activity in the hippocampus and is less sensitive to Ca2+ than AC1, AC8-/- mice exhibited mossy fiber LTP defects comparable with AC1-/- and DKO mice. Furthermore, short-term plasticity was disrupted in AC8-/- mice but not in AC1-/- mice. Because AC1 is not localized at the excitatory synapses in hippocampal neurons, we hypothesized that AC8 may be targeted to synapses, in which higher synaptic-specific Ca2+ increases occur. Here, we report that AC8 accumulates in puncta of dendrites and axons in hippocampal neurons and colocalizes with synaptic marker proteins. These data indicate that both synaptic and nonsynaptic cAMP signals, generated by different Ca2+-stimulated adenylyl cyclases, are required for mossy fiber LTP.


Assuntos
Adenilil Ciclases/metabolismo , Potenciação de Longa Duração/fisiologia , Fibras Musgosas Hipocampais/enzimologia , Sinapses/enzimologia , Adenilil Ciclases/biossíntese , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Animais , Axônios/metabolismo , Biomarcadores/análise , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Dendritos/metabolismo , Cães , Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Técnicas In Vitro , Rim/citologia , Rim/metabolismo , Potenciação de Longa Duração/genética , Camundongos , Camundongos Knockout , Camundongos Mutantes , Neurônios/enzimologia , Neurônios/metabolismo , Transfecção
13.
Neuron ; 36(4): 713-26, 2002 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12441059

RESUMO

Adenylyl cyclase types 1 (AC1) and 8 (AC8), the two major calmodulin-stimulated adenylyl cyclases in the brain, couple NMDA receptor activation to cAMP signaling pathways. Cyclic AMP signaling pathways are important for many brain functions, such as learning and memory, drug addiction, and development. Here we show that wild-type, AC1, AC8, or AC1&8 double knockout (DKO) mice were indistinguishable in tests of acute pain, whereas behavioral responses to peripheral injection of two inflammatory stimuli, formalin and complete Freund's adjuvant, were reduced or abolished in AC1&8 DKO mice. AC1 and AC8 are highly expressed in the anterior cingulate cortex (ACC), and contribute to inflammation-induced activation of CREB. Intra-ACC administration of forskolin rescued behavioral allodynia defective in the AC1&8 DKO mice. Our studies suggest that AC1 and AC8 in the ACC selectively contribute to behavioral allodynia.


Assuntos
Adenilil Ciclases/deficiência , Encéfalo/enzimologia , Calmodulina/metabolismo , AMP Cíclico/metabolismo , Hiperalgesia/genética , Vias Neurais/enzimologia , Dor/genética , Adenilil Ciclases/genética , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , AMP Cíclico/análogos & derivados , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Adjuvante de Freund , Hiperalgesia/enzimologia , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Vias Neurais/fisiopatologia , Dor/enzimologia , Dor/fisiopatologia , Medição da Dor , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...