Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712243

RESUMO

CRISPR prime editing offers unprecedented versatility and precision for the installation of genetic edits in situ . Here we describe the development and characterization of the Multiplexing Of Site-specific Alterations for In situ Characterization ( MOSAIC ) method, which leverages a non-viral PCR-based prime editing method to enable rapid installation of thousands of defined edits in pooled fashion. We show that MOSAIC can be applied to perform in situ saturation mutagenesis screens of: (1) the BCR-ABL1 fusion gene, successfully identifying known and potentially new imatinib drug-resistance variants; and (2) the IRF1 untranslated region (UTR), re-confirming non-coding regulatory elements involved in transcriptional initiation. Furthermore, we deployed MOSAIC to enable high-throughput, pooled screening of hundreds of systematically designed prime editing guide RNA ( pegRNA ) constructs for a large series of different genomic loci. This rapid screening of >18,000 pegRNA designs identified optimized pegRNAs for 89 different genomic target modifications and revealed the lack of simple predictive rules for pegRNA design, reinforcing the need for experimental optimization now greatly simplified and enabled by MOSAIC. We envision that MOSAIC will accelerate and facilitate the application of CRISPR prime editing for a wide range of high-throughput screens in human and other cell systems.

2.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712303

RESUMO

Current technologies for upregulation of endogenous genes use targeted artificial transcriptional activators but stable gene activation requires persistent expression of these synthetic factors. Although general "hit-and-run" strategies exist for inducing long-term silencing of endogenous genes using targeted artificial transcriptional repressors, to our knowledge no equivalent approach for gene activation has been described to date. Here we show stable gene activation can be achieved by harnessing endogenous transcription factors ( EndoTF s) that are normally expressed in human cells. Specifically, EndoTFs can be recruited to activate endogenous human genes of interest by using CRISPR-based gene editing to introduce EndoTF DNA binding motifs into a target gene promoter. This Precision Editing of Regulatory Sequences to Induce Stable Transcription-On ( PERSIST-On ) approach results in stable long-term gene activation, which we show is durable for at least five months. Using a high-throughput CRISPR prime editing pooled screening method, we also show that the magnitude of gene activation can be finely tuned either by using binding sites for different EndoTF or by introducing specific mutations within such sites. Our results delineate a generalizable framework for using PERSIST-On to induce heritable and fine-tunable gene activation in a hit-and-run fashion, thereby enabling a wide range of research and therapeutic applications that require long-term upregulation of a target gene.

3.
Nat Genet ; 56(5): 925-937, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658794

RESUMO

CRISPR base editing screens enable analysis of disease-associated variants at scale; however, variable efficiency and precision confounds the assessment of variant-induced phenotypes. Here, we provide an integrated experimental and computational pipeline that improves estimation of variant effects in base editing screens. We use a reporter construct to measure guide RNA (gRNA) editing outcomes alongside their phenotypic consequences and introduce base editor screen analysis with activity normalization (BEAN), a Bayesian network that uses per-guide editing outcomes provided by the reporter and target site chromatin accessibility to estimate variant impacts. BEAN outperforms existing tools in variant effect quantification. We use BEAN to pinpoint common regulatory variants that alter low-density lipoprotein (LDL) uptake, implicating previously unreported genes. Additionally, through saturation base editing of LDLR, we accurately quantify missense variant pathogenicity that is consistent with measurements in UK Biobank patients and identify underlying structural mechanisms. This work provides a widely applicable approach to improve the power of base editing screens for disease-associated variant characterization.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genótipo , Fenótipo , RNA Guia de Sistemas CRISPR-Cas , Humanos , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , Teorema de Bayes , Receptores de LDL/genética , Células HEK293
4.
Res Sq ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38645152

RESUMO

With the growing number of single-cell analysis tools, benchmarks are increasingly important to guide analysis and method development. However, a lack of standardisation and extensibility in current benchmarks limits their usability, longevity, and relevance to the community. We present Open Problems, a living, extensible, community-guided benchmarking platform including 10 current single-cell tasks that we envision will raise standards for the selection, evaluation, and development of methods in single-cell analysis.

5.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352499

RESUMO

The challenge of systematically modifying and optimizing regulatory elements for precise gene expression control is central to modern genomics and synthetic biology. Advancements in generative AI have paved the way for designing synthetic sequences with the aim of safely and accurately modulating gene expression. We leverage diffusion models to design context-specific DNA regulatory sequences, which hold significant potential toward enabling novel therapeutic applications requiring precise modulation of gene expression. Our framework uses a cell type-specific diffusion model to generate synthetic 200 bp regulatory elements based on chromatin accessibility across different cell types. We evaluate the generated sequences based on key metrics to ensure they retain properties of endogenous sequences: transcription factor binding site composition, potential for cell type-specific chromatin accessibility, and capacity for sequences generated by DNA diffusion to activate gene expression in different cell contexts using state-of-the-art prediction models. Our results demonstrate the ability to robustly generate DNA sequences with cell type-specific regulatory potential. DNA-Diffusion paves the way for revolutionizing a regulatory modulation approach to mammalian synthetic biology and precision gene therapy.

6.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328127

RESUMO

Across a range of biological processes, cells undergo coordinated changes in gene expression, resulting in transcriptome dynamics that unfold within a low-dimensional manifold. Single-cell RNA-sequencing (scRNA-seq) only measures temporal snapshots of gene expression. However, information on the underlying low-dimensional dynamics can be extracted using RNA velocity, which models unspliced and spliced RNA abundances to estimate the rate of change of gene expression. Available RNA velocity algorithms can be fragile and rely on heuristics that lack statistical control. Moreover, the estimated vector field is not dynamically consistent with the traversed gene expression manifold. Here, we develop a generative model of RNA velocity and a Bayesian inference approach that solves these problems. Our model couples velocity field and manifold estimation in a reformulated, unified framework, so as to coherently identify the parameters of an autonomous dynamical system. Focusing on the cell cycle, we implemented VeloCycle to study gene regulation dynamics on one-dimensional periodic manifolds and validated using live-imaging its ability to infer actual cell cycle periods. We benchmarked RNA velocity inference with sensitivity analyses and demonstrated one- and multiple-sample testing. We also conducted Markov chain Monte Carlo inference on the model, uncovering key relationships between gene-specific kinetics and our gene-independent velocity estimate. Finally, we applied VeloCycle to in vivo samples and in vitro genome-wide Perturb-seq, revealing regionally-defined proliferation modes in neural progenitors and the effect of gene knockdowns on cell cycle speed. Ultimately, VeloCycle expands the scRNA-seq analysis toolkit with a modular and statistically rigorous RNA velocity inference framework.

7.
bioRxiv ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38076922

RESUMO

Spatially resolved transcriptomics offers unprecedented insight by enabling the profiling of gene expression within the intact spatial context of cells, effectively adding a new and essential dimension to data interpretation. To efficiently detect spatial structure of interest, an essential step in analyzing such data involves identifying spatially variable genes. Despite researchers having developed several computational methods to accomplish this task, the lack of a comprehensive benchmark evaluating their performance remains a considerable gap in the field. Here, we present a systematic evaluation of 14 methods using 60 simulated datasets generated by four different simulation strategies, 12 real-world transcriptomics, and three spatial ATAC-seq datasets. We find that spatialDE2 consistently outperforms the other benchmarked methods, and Moran's I achieves competitive performance in different experimental settings. Moreover, our results reveal that more specialized algorithms are needed to identify spatially variable peaks.

8.
medRxiv ; 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37732177

RESUMO

CRISPR base editing screens are powerful tools for studying disease-associated variants at scale. However, the efficiency and precision of base editing perturbations vary, confounding the assessment of variant-induced phenotypic effects. Here, we provide an integrated pipeline that improves the estimation of variant impact in base editing screens. We perform high-throughput ABE8e-SpRY base editing screens with an integrated reporter construct to measure the editing efficiency and outcomes of each gRNA alongside their phenotypic consequences. We introduce BEAN, a Bayesian network that accounts for per-guide editing outcomes and target site chromatin accessibility to estimate variant impacts. We show this pipeline attains superior performance compared to existing tools in variant classification and effect size quantification. We use BEAN to pinpoint common variants that alter LDL uptake, implicating novel genes. Additionally, through saturation base editing of LDLR, we enable accurate quantitative prediction of the effects of missense variants on LDL-C levels, which aligns with measurements in UK Biobank individuals, and identify structural mechanisms underlying variant pathogenicity. This work provides a widely applicable approach to improve the power of base editor screens for disease-associated variant characterization.

9.
Nat Methods ; 20(9): 1368-1378, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537351

RESUMO

Gene regulatory networks (GRNs) are key determinants of cell function and identity and are dynamically rewired during development and disease. Despite decades of advancement, challenges remain in GRN inference, including dynamic rewiring, causal inference, feedback loop modeling and context specificity. To address these challenges, we develop Dictys, a dynamic GRN inference and analysis method that leverages multiomic single-cell assays of chromatin accessibility and gene expression, context-specific transcription factor footprinting, stochastic process network and efficient probabilistic modeling of single-cell RNA-sequencing read counts. Dictys improves GRN reconstruction accuracy and reproducibility and enables the inference and comparative analysis of context-specific and dynamic GRNs across developmental contexts. Dictys' network analyses recover unique insights in human blood and mouse skin development with cell-type-specific and dynamic GRNs. Its dynamic network visualizations enable time-resolved discovery and investigation of developmental driver transcription factors and their regulated targets. Dictys is available as a free, open-source and user-friendly Python package.


Assuntos
Redes Reguladoras de Genes , Multiômica , Animais , Camundongos , Humanos , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Algoritmos
10.
bioRxiv ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292647

RESUMO

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for ß-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here we compared combined CRISPR-Cas9 endonuclease editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in superior HbF induction, including in engrafting erythroid cells from sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. We corroborated prior observations that double strand breaks (DSBs) could produce unintended on- target outcomes in hematopoietic stem and progenitor cells (HSPCs) such as long deletions and centromere-distal chromosome fragment loss. We show these unintended outcomes are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing HSPCs without cytokine culture bypassed long deletion and micronuclei formation while preserving efficient on-target editing and engraftment function. These results indicate that nuclease editing of quiescent hematopoietic stem cells (HSCs) limits DSB genotoxicity while maintaining therapeutic potency and encourages efforts for in vivo delivery of nucleases to HSCs.

11.
Cell Genom ; 3(6): 100318, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37388913

RESUMO

Although vast numbers of putative gene regulatory elements have been cataloged, the sequence motifs and individual bases that underlie their functions remain largely unknown. Here, we combine epigenetic perturbations, base editing, and deep learning to dissect regulatory sequences within the exemplar immune locus encoding CD69. We converge on a ∼170 base interval within a differentially accessible and acetylated enhancer critical for CD69 induction in stimulated Jurkat T cells. Individual C-to-T base edits within the interval markedly reduce element accessibility and acetylation, with corresponding reduction of CD69 expression. The most potent base edits may be explained by their effect on regulatory interactions between the transcriptional activators GATA3 and TAL1 and the repressor BHLHE40. Systematic analysis suggests that the interplay between GATA3 and BHLHE40 plays a general role in rapid T cell transcriptional responses. Our study provides a framework for parsing regulatory elements in their endogenous chromatin contexts and identifying operative artificial variants.

12.
Nat Methods ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248389

RESUMO

Most current single-cell analysis pipelines are limited to cell embeddings and rely heavily on clustering, while lacking the ability to explicitly model interactions between different feature types. Furthermore, these methods are tailored to specific tasks, as distinct single-cell problems are formulated differently. To address these shortcomings, here we present SIMBA, a graph embedding method that jointly embeds single cells and their defining features, such as genes, chromatin-accessible regions and DNA sequences, into a common latent space. By leveraging the co-embedding of cells and features, SIMBA allows for the study of cellular heterogeneity, clustering-free marker discovery, gene regulation inference, batch effect removal and omics data integration. We show that SIMBA provides a single framework that allows diverse single-cell problems to be formulated in a unified way and thus simplifies the development of new analyses and extension to new single-cell modalities. SIMBA is implemented as a comprehensive Python library ( https://simba-bio.readthedocs.io ).

13.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37099664

RESUMO

Transcription factors (TFs) are key regulatory proteins that control the transcriptional rate of cells by binding short DNA sequences called transcription factor binding sites (TFBS) or motifs. Identifying and characterizing TFBS is fundamental to understanding the regulatory mechanisms governing the transcriptional state of cells. During the last decades, several experimental methods have been developed to recover DNA sequences containing TFBS. In parallel, computational methods have been proposed to discover and identify TFBS motifs based on these DNA sequences. This is one of the most widely investigated problems in bioinformatics and is referred to as the motif discovery problem. In this manuscript, we review classical and novel experimental and computational methods developed to discover and characterize TFBS motifs in DNA sequences, highlighting their advantages and drawbacks. We also discuss open challenges and future perspectives that could fill the remaining gaps in the field.


Assuntos
Algoritmos , Fatores de Transcrição , Ligação Proteica , Fatores de Transcrição/metabolismo , Sítios de Ligação , Sequência de Bases , Biologia Computacional
14.
bioRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36945568

RESUMO

Cas9 is a programmable nuclease that has furnished transformative technologies, including base editors and transcription modulators (e.g., CRISPRi/a), but several applications of these technologies, including therapeutics, mandatorily require precision control of their half-life. For example, such control can help avert any potential immunological and adverse events in clinical trials. Current genome editing technologies to control the half-life of Cas9 are slow, have lower activity, involve fusion of large response elements (> 230 amino acids), utilize expensive controllers with poor pharmacological attributes, and cannot be implemented in vivo on several CRISPR-based technologies. We report a general platform for half-life control using the molecular glue, pomalidomide, that binds to a ubiquitin ligase complex and a response-element bearing CRISPR-based technology, thereby causing the latter's rapid ubiquitination and degradation. Using pomalidomide, we were able to control the half-life of large CRISPR-based technologies (e.g., base editors, CRISPRi) and small anti-CRISPRs that inhibit such technologies, allowing us to build the first examples of on-switch for base editors. The ability to switch on, fine-tune and switch-off CRISPR-based technologies with pomalidomide allowed complete control over their activity, specificity, and genome editing outcome. Importantly, the miniature size of the response element and favorable pharmacological attributes of the drug pomalidomide allowed control of activity of base editor in vivo using AAV as the delivery vehicle. These studies provide methods and reagents to precisely control the dosage and half-life of CRISPR-based technologies, propelling their therapeutic development.

15.
Nat Genet ; 55(1): 34-43, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522432

RESUMO

CRISPR gene editing holds great promise to modify DNA sequences in somatic cells to treat disease. However, standard computational and biochemical methods to predict off-target potential focus on reference genomes. We developed an efficient tool called CRISPRme that considers single-nucleotide polymorphism (SNP) and indel genetic variants to nominate and prioritize off-target sites. We tested the software with a BCL11A enhancer targeting guide RNA (gRNA) showing promise in clinical trials for sickle cell disease and ß-thalassemia and found that the top candidate off-target is produced by an allele common in African-ancestry populations (MAF 4.5%) that introduces a protospacer adjacent motif (PAM) sequence. We validated that SpCas9 generates strictly allele-specific indels and pericentric inversions in CD34+ hematopoietic stem and progenitor cells (HSPCs), although high-fidelity Cas9 mitigates this off-target. This report illustrates how genetic variants should be considered as modifiers of gene editing outcomes. We expect that variant-aware off-target assessment will become integral to therapeutic genome editing evaluation and provide a powerful approach for comprehensive off-target nomination.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Células-Tronco Hematopoéticas , Mutação INDEL , RNA Guia de Sistemas CRISPR-Cas
17.
Nat Biotechnol ; 41(3): 409-416, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36203014

RESUMO

Methods for in vitro DNA cleavage and molecular cloning remain unable to precisely cleave DNA directly adjacent to bases of interest. Restriction enzymes (REs) must bind specific motifs, whereas wild-type CRISPR-Cas9 or CRISPR-Cas12 nucleases require protospacer adjacent motifs (PAMs). Here we explore the utility of our previously reported near-PAMless SpCas9 variant, named SpRY, to serve as a universal DNA cleavage tool for various cloning applications. By performing SpRY DNA digests (SpRYgests) using more than 130 guide RNAs (gRNAs) sampling a wide diversity of PAMs, we discovered that SpRY is PAMless in vitro and can cleave DNA at practically any sequence, including sites refractory to cleavage with wild-type SpCas9. We illustrate the versatility and effectiveness of SpRYgests to improve the precision of several cloning workflows, including those not possible with REs or canonical CRISPR nucleases. We also optimize a rapid and simple one-pot gRNA synthesis protocol to streamline SpRYgest implementation. Together, SpRYgests can improve various DNA engineering applications that benefit from precise DNA breaks.


Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , Sistemas CRISPR-Cas/genética , DNA/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas
18.
Nat Cancer ; 3(8): 961-975, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35982179

RESUMO

Rhabdomyosarcoma (RMS) is a common childhood cancer that shares features with developing skeletal muscle. Yet, the conservation of cellular hierarchy with human muscle development and the identification of molecularly defined tumor-propagating cells has not been reported. Using single-cell RNA-sequencing, DNA-barcode cell fate mapping and functional stem cell assays, we uncovered shared tumor cell hierarchies in RMS and human muscle development. We also identified common developmental stages at which tumor cells become arrested. Fusion-negative RMS cells resemble early myogenic cells found in embryonic and fetal development, while fusion-positive RMS cells express a highly specific gene program found in muscle cells transiting from embryonic to fetal development at 7-7.75 weeks of age. Fusion-positive RMS cells also have neural pathway-enriched states, suggesting less-rigid adherence to muscle-lineage hierarchies. Finally, we identified a molecularly defined tumor-propagating subpopulation in fusion-negative RMS that shares remarkable similarity to bi-potent, muscle mesenchyme progenitors that can make both muscle and osteogenic cells.


Assuntos
Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Criança , Humanos , Músculo Esquelético/patologia , Rabdomiossarcoma/genética , Análise de Célula Única , Células-Tronco/patologia
20.
Leukemia ; 36(2): 383-393, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34344987

RESUMO

Acute myeloid leukemia (AML) is a devastating disease, and clinical outcomes are still far from satisfactory. Here, to identify novel targets for AML therapy, we performed a genome-wide CRISPR/Cas9 screen using AML cell lines, followed by a second screen in vivo. We show that PAICS, an enzyme involved in de novo purine biosynthesis, is a potential target for AML therapy. AML cells expressing shRNA-PAICS exhibited a proliferative disadvantage, indicating a toxic effect of shRNA-PAICS. Treatment of human AML cells with a PAICS inhibitor suppressed their proliferation by inhibiting DNA synthesis and promoting apoptosis and had anti-leukemic effects in AML PDX models. Furthermore, CRISPR/Cas9 screens using AML cells in the presence of the inhibitor revealed genes mediating resistance or synthetic lethal to PAICS inhibition. Our findings identify PAICS as a novel therapeutic target for AML and further define components of de novo purine synthesis pathway and its downstream effectors essential for AML cell survival.


Assuntos
Sistemas CRISPR-Cas , Carboxiliases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Purinas/metabolismo , Animais , Apoptose , Proliferação de Células , Estudo de Associação Genômica Ampla , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...