Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 122(12): 2510-2543, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29497589

RESUMO

The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 µm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 µm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.

2.
Science ; 260(5109): 797-801, 1993 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-17746114

RESUMO

Earth-based telescopic spectral imaging techniques were used to document the spatial distribution of crater materials within the large lunar crater Copernicus at the subkilometer scale on the basis of spectral ultraviolet-visible-near-infrared characteristics. The proposed spectral mixing analysis leads to a first-order mapping of the impact melt material within the crater. Olivine was detected not only within the three central peaks but also along a significant portion of the crater rim. Consideration of an olivine-bearing end-member in the mixing model emphasizes the overall morphological pattern of the rim and wall terraces in the associated fraction image. The identification of widely exposed olivine units supports the idea that the lower crust and possibly the lunar mantle itself are regionally at shallow depth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...